
Table of Contents
Welcome to Komodo.............................................................................................................................1/437

Starting Komodo........................................................................................................................1/437
Windows..............................................................................................................................1/437
Unix.....................................................................................................................................2/437

The Komodo Workspace...........................................................................................................2/437
The Start Page.....................................................................................................................2/437
Title Bar...............................................................................................................................3/437
Menus..................................................................................................................................3/437
Context Menus....................................................................................................................3/437
Toolbars...............................................................................................................................4/437
Left Pane.............................................................................................................................6/437

Projects Tab..................................................................................................................6/437
Code Tab.......................................................................................................................6/437

Right Pane...........................................................................................................................7/437
Toolbox Tab..................................................................................................................7/437
Shared Toolbox Tab......................................................................................................8/437

Editor Pane..........................................................................................................................9/437
Bottom Pane........................................................................................................................9/437
Managing Tabs and Panes.................................................................................................10/437

Showing and Hiding Tabs..........................................................................................10/437
Showing and Hiding Panes.........................................................................................10/437
Resizing Panes............................................................................................................10/437

Enabling Full Screen Mode...............................................................................................10/437
Getting Started with the Sample Project..................................................................................11/437

Opening the Sample Project and Files..............................................................................11/437
Editing a Sample Program.................................................................................................11/437
Debugging a Sample Program...........................................................................................11/437

Working  with Projects........................................................................................................................13/437
Displaying the Project Manager..............................................................................................13/437
Creating Projects......................................................................................................................13/437
Opening Projects......................................................................................................................14/437
Setting the Active Project........................................................................................................14/437
Adding Components to Projects..............................................................................................14/437
Project Display Settings...........................................................................................................16/437
Saving Projects........................................................................................................................16/437
Refreshing Project Status.........................................................................................................17/437
Importing and Exporting Projects via Packages......................................................................17/437
Importing Files from the File System......................................................................................18/437
Source Code Control................................................................................................................19/437
Reverting Projects....................................................................................................................19/437
Closing Projects.......................................................................................................................20/437
Deleting Projects......................................................................................................................20/437

Welcome to Komodo

i



Table of Contents
Working  with Projects

Project Properties.....................................................................................................................20/437

Using the Toolbox...............................................................................................................................21/437
Displaying the Toolbox...........................................................................................................21/437
Adding Components to the Toolbox........................................................................................21/437
Exporting and Importing Toolbox Contents............................................................................23/437
Sharing Toolboxes...................................................................................................................23/437

Working  with Files..............................................................................................................................24/437
Creating Files...........................................................................................................................24/437

Creating Files from Templates..........................................................................................24/437
Storing Files within a Project or the Toolbox..........................................................................25/437

Creating an Open Shortcut to the Current File Location..................................................25/437
Exporting Files as Projects................................................................................................25/437
Exporting Files to a Package.............................................................................................25/437

Opening Files...........................................................................................................................26/437
Opening Files with the Open/Find Toolbar.......................................................................26/437
Opening Remote Files.......................................................................................................27/437

Connecting to an FTP Server......................................................................................27/437
Navigating the Remote File System...........................................................................28/437
Storing Remote Files in Projects or the Toolbox........................................................28/437

Switching Between Files.........................................................................................................29/437
Comparing Files.......................................................................................................................29/437
Refreshing File Status..............................................................................................................30/437
Source Code Control................................................................................................................30/437
File Properties and Settings.....................................................................................................31/437

Properties Tab...................................................................................................................31/437
Source Control Tab...........................................................................................................31/437
Editing Tab........................................................................................................................31/437
Indentation Tab.................................................................................................................32/437
Preview Tab.......................................................................................................................32/437

Printing Files............................................................................................................................32/437
Page Setup.........................................................................................................................33/437
Print to HTML File...........................................................................................................33/437

Saving Files..............................................................................................................................33/437
Saving Files Remotely......................................................................................................34/437
Show Unsaved Changes....................................................................................................34/437

Reverting Files.........................................................................................................................34/437
Closing Files............................................................................................................................35/437

Welcome to Komodo

ii



Table of Contents
Searching.............................................................................................................................................36/437

Searching for Strings...............................................................................................................36/437
Searching Within Open Files: Find Dialog.......................................................................36/437
Replacing Within Open Files: Replace Dialog.................................................................37/437
Searching for the Word Under the Cursor.........................................................................38/437
Incremental Search............................................................................................................39/437
Searching All  Files: Find in Files Dialog..........................................................................39/437
Fast Search: Open/Find Toolbar.......................................................................................41/437
Find Results Tabs..............................................................................................................42/437

Finding Functions: Function Search........................................................................................42/437
Moving Between Functions..............................................................................................42/437
Displaying a List of Functions..........................................................................................42/437

Editing..................................................................................................................................................44/437
Language Support....................................................................................................................45/437

Syntax Coloring and Indentation.......................................................................................45/437
Background Syntax Checking...........................................................................................45/437
AutoComplete...................................................................................................................46/437

PHP AutoComplete....................................................................................................47/437
Python AutoComplete................................................................................................47/437
Perl AutoComplete.....................................................................................................47/437
Tcl AutoComplete......................................................................................................47/437
XML  AutoComplete...................................................................................................48/437
XSLT AutoComplete..................................................................................................49/437

CallTips.............................................................................................................................49/437
Viewing the Current File as Another Language................................................................50/437
Commenting Blocks of Code............................................................................................50/437

Manipulating Code..................................................................................................................51/437
Automatically Repeating Keystrokes................................................................................51/437
Indenting and Un−indenting Lines of Code......................................................................51/437
Reflowing Paragraphs.......................................................................................................51/437
Joining Lines.....................................................................................................................52/437
Converting between Uppercase and Lowercase................................................................52/437
Transposing Characters.....................................................................................................52/437
Literal Characters..............................................................................................................52/437
Commenting and Un−commenting Lines or Blocks of Code...........................................52/437
Cleaning Line Endings......................................................................................................53/437
Tabifying and Untabifying Regions..................................................................................53/437
Selecting Columns.............................................................................................................54/437
Completing Words............................................................................................................54/437
Selecting Blocks of Code..................................................................................................55/437

Editor Display Characteristics.................................................................................................55/437
Toggling Whitespace On and Off.....................................................................................55/437

Welcome to Komodo

iii



Table of Contents
Editing

Toggling Indentation Guides On and Off.........................................................................55/437
Toggling Line Numbers On and Off.................................................................................55/437
Toggling EOL (end of line) Markers On and Off.............................................................56/437
Increasing and Decreasing the Code Font Size.................................................................56/437
Toggling Fixed and Non−Fixed Width Fonts...................................................................56/437
Folding and Unfolding Code.............................................................................................56/437

Navigating Within Files...........................................................................................................57/437
Moving to a Specific Line.................................................................................................57/437
Setting and Moving to Bookmarks and Marks..................................................................57/437
Matching Braces................................................................................................................58/437
Detecting Changed Files...................................................................................................59/437

Preview in Browser..................................................................................................................59/437
Editor Tab Display...................................................................................................................59/437

Working  with Folders.........................................................................................................................61/437
Folder Options.........................................................................................................................61/437

Import from File System...................................................................................................61/437
Export Contents to Package..............................................................................................62/437
Import Contents from Package..........................................................................................63/437
Refresh Folder Contents Status.........................................................................................63/437
Adding Components to Folders.........................................................................................63/437
Exporting Contents as Project File....................................................................................64/437
Renaming Folders.............................................................................................................64/437
Source Control on Folder Contents...................................................................................64/437
Deleting Folders................................................................................................................64/437

Snippets................................................................................................................................................65/437
Creating Snippets.....................................................................................................................65/437
Configuring Snippets...............................................................................................................65/437
Using Snippets.........................................................................................................................66/437
Snippet Options........................................................................................................................66/437

Snippet Properties.............................................................................................................67/437
Assigning Custom Icons to Snippets..........................................................................67/437
Snippet Key Bindings.................................................................................................67/437

Macros..................................................................................................................................................69/437
Creating Macros.......................................................................................................................69/437

Recording Macros.............................................................................................................69/437
Saving Recorded Macros..................................................................................................69/437
Programming Macros........................................................................................................70/437

Running Macros.......................................................................................................................70/437
Specifying Macro Triggers......................................................................................................70/437

Welcome to Komodo

iv



Table of Contents
Macros

Running Macros in the Background..................................................................................71/437
Storing Macros in Projects or the Toolbox..............................................................................72/437

Macro Options...................................................................................................................72/437
Assigning Custom Icons to Macros..................................................................................73/437
Assigning Key Bindings to Macros..................................................................................73/437

Macro API...........................................................................................................................................74/437
Introduction to the Komodo Macro API..................................................................................74/437

Warning.............................................................................................................................74/437
Feedback............................................................................................................................74/437

The editor Object.....................................................................................................................74/437
editor Attributes.................................................................................................................75/437
komodo.editor Methods....................................................................................................76/437
editor Object Notes............................................................................................................80/437

The document Object...............................................................................................................80/437
document Attributes..........................................................................................................80/437

The file Object.........................................................................................................................81/437
file attributes......................................................................................................................81/437

The komodo.doCommand Function........................................................................................81/437
The komodo.findPart Function................................................................................................81/437
The komodo.interpolate Function............................................................................................82/437
The komodo.getWordUnderCursor Function..........................................................................82/437

Komodo Command Id List................................................................................................................83/437
Breakpoint Manager................................................................................................................83/437
Code Browser..........................................................................................................................83/437
Code Intelligence.....................................................................................................................83/437
Debugger..................................................................................................................................83/437
Editor.......................................................................................................................................84/437
Find..........................................................................................................................................87/437
General.....................................................................................................................................87/437
Help..........................................................................................................................................88/437
Macro.......................................................................................................................................89/437
Projects/Toolbox......................................................................................................................89/437
Source Code.............................................................................................................................89/437
Source Control.........................................................................................................................90/437
Toolbox....................................................................................................................................90/437
Tools........................................................................................................................................90/437
User Interface...........................................................................................................................91/437

Welcome to Komodo

v



Table of Contents
Templates.............................................................................................................................................93/437

Creating New Files from Templates........................................................................................93/437
Creating Custom Templates.....................................................................................................93/437

Using Interpolation Shortcuts in Custom Templates........................................................94/437
Storing Templates in a Project or the Toolbox........................................................................94/437

Template Options..............................................................................................................95/437
Assigning Custom Icons to Templates..............................................................................95/437
Template Key Bindings.....................................................................................................96/437

Open Shortcuts....................................................................................................................................97/437
Open Shortcut Options.............................................................................................................97/437

Open Shortcut Properties..................................................................................................98/437
Assigning Custom Icons to Open Shortcuts...............................................................98/437
Open Shortcut Key Bindings......................................................................................98/437

URL Shortcuts...................................................................................................................................100/437
URL Shortcut Options...........................................................................................................100/437

URL Shortcut Properties.................................................................................................101/437
Assigning Custom Icons to URL Shortcuts..............................................................101/437
URL Shortcut Key Bindings.....................................................................................101/437

Run Commands.................................................................................................................................103/437
Creating Run Commands.......................................................................................................103/437

Simple Run Commands...................................................................................................103/437
Advanced Run Commands..............................................................................................104/437
Command Output Tab.....................................................................................................105/437

Storing Run Commands in a Project or the Toolbox.............................................................105/437
Run Command Properties...............................................................................................106/437

Assigning Custom Icons to Run Commands............................................................106/437
Run Command Key Bindings...................................................................................106/437

Custom Toolbars and Menus...........................................................................................................107/437
Creating Custom Toolbars and Menus..................................................................................107/437
Custom Menu and Toolbar Options.......................................................................................107/437

Custom Menu and Toolbar Properties............................................................................108/437

Debugging Programs........................................................................................................................109/437
Starting the Debugger............................................................................................................109/437

Multi−Session Debugging...............................................................................................110/437
Debugging Options................................................................................................................110/437

Global Options................................................................................................................111/437
General Tab.....................................................................................................................111/437
Environment Tab.............................................................................................................112/437

Welcome to Komodo

vi



Table of Contents
Debugging Programs

CGI Environment Tab.....................................................................................................112/437
CGI Input Tab.................................................................................................................113/437
Storing Debug Configurations........................................................................................113/437

Breakpoints and Tcl Spawnpoints.........................................................................................114/437
Breakpoint and Spawnpoint Management......................................................................114/437

Toggling Breakpoints...............................................................................................114/437
Toggling Spawnpoints..............................................................................................115/437
Go to the Source Code..............................................................................................116/437
Breakpoint Properties...............................................................................................116/437
Forcing a Break.........................................................................................................117/437

Remote Debugging................................................................................................................118/437
Listen for Remote Debugger...........................................................................................118/437
Check Listener Status......................................................................................................118/437
Multi−User Debugging...................................................................................................118/437
Debugger Proxy...............................................................................................................119/437

Sending Input to the Program................................................................................................120/437
Using Debugger Commands..................................................................................................121/437

Debugger Command Description....................................................................................121/437
Debugger Stepping Behavior..........................................................................................122/437

Viewing the Debugging Session............................................................................................123/437
Viewing Variables...........................................................................................................123/437

Python Variables and Objects...................................................................................124/437
PHP and Tcl Variables..............................................................................................124/437
Perl Variables............................................................................................................124/437
XSLT Variables........................................................................................................124/437

Setting Watched Variables..............................................................................................125/437
Output Tab.......................................................................................................................126/437
HTML Preview Tab........................................................................................................126/437
Viewing the Call Stack....................................................................................................126/437

Watching Files.......................................................................................................................127/437
Detaching the Debugger........................................................................................................127/437
Stopping the Debugger..........................................................................................................127/437

Debugging Perl..................................................................................................................................128/437
Configuring the Perl Debugger..............................................................................................128/437
Debugging Perl Remotely......................................................................................................128/437
Disabling and Enabling the Perl Dev Kit (PDK) Debugger..................................................130/437

Disabling the PDK Debugger on the Remote Machine..................................................130/437
Configuring Perl for CGI Debugging....................................................................................131/437

Configuring a Microsoft IIS Web Server........................................................................131/437
Configuring an Apache Web Server...............................................................................132/437
Starting a CGI Debugging Session..................................................................................132/437

Welcome to Komodo

vii



Table of Contents
Debugging Python.............................................................................................................................133/437

Configuring the Python Debugger.........................................................................................133/437
Using the Python Remote Debugger.....................................................................................133/437

Installing the Python Remote Debugger on the Remote Machine..................................133/437
Invoking the Python Remote Debugger..........................................................................134/437

Running dbgpClient.py from the Command Line....................................................134/437
Using dbgpClient Functions in Python Programs....................................................135/437
Just−in−Time Debugging.........................................................................................135/437

CGI Debugging...............................................................................................................136/437

Debugging PHP.................................................................................................................................137/437
Installing PHP........................................................................................................................137/437

Windows..........................................................................................................................137/437
Linux...............................................................................................................................137/437

Local PHP Debugging...........................................................................................................138/437
Configuring Local PHP Debugging................................................................................138/437
Starting and Stopping a PHP Local Debugging Session.................................................139/437

Remote PHP Debugging........................................................................................................140/437
Configuring Remote PHP Debugging.............................................................................140/437

Step 1 − Copy the Debugging Extension to the Web Server....................................140/437
Step 2 − Edit the Web Server's PHP Configuration.................................................141/437

Starting and Stopping a PHP Remote Debugging Session.............................................142/437
Using xdebug_break().....................................................................................................143/437

Debugging Tcl....................................................................................................................................145/437
Configuring Local Tcl Debugging.........................................................................................145/437
Remote Tcl Debugging..........................................................................................................145/437

Installing the Tcl Debugger Application on a Remote Machine.....................................145/437
Invoking the Tcl Debugger Application..........................................................................146/437

Debugging XSLT...............................................................................................................................147/437
Using the XSLT Debugger....................................................................................................147/437

Using a Remote XML  Input File.....................................................................................147/437
XSLT Stepping Behavior................................................................................................147/437

Interactive Shell................................................................................................................................149/437
Stand−Alone Interactive Shell...............................................................................................149/437
Debugging with an Interactive Shell.....................................................................................149/437
Using the Interactive Shell.....................................................................................................150/437

Setting Shell Preferences.................................................................................................150/437
Starting the Interactive Shell...........................................................................................150/437
Using Multiple Shells......................................................................................................151/437
Using AutoComplete and CallTips.................................................................................151/437

Welcome to Komodo

viii



Table of Contents
Interactive Shell

Customizing Colors and Fonts........................................................................................151/437
Viewing Shell History.....................................................................................................151/437
Stopping a Shell Session.................................................................................................151/437
Clearing the Shell Buffer.................................................................................................152/437

Using the Python Interactive Shell........................................................................................152/437
Debugging with the Python Shell....................................................................................152/437

Using the Tcl Interactive Shell..............................................................................................153/437
Debugging with the Tcl Shell..........................................................................................153/437

Using the Perl Interactive Shell.............................................................................................153/437
Debugging with the Perl Shell........................................................................................156/437

Code Intelligence...............................................................................................................................157/437
Building the Code Intelligence Database...............................................................................157/437
Code Browser........................................................................................................................158/437

Context Menu..................................................................................................................159/437
Sorting.............................................................................................................................160/437
Locating Current Scope...................................................................................................160/437
Using the Scope Indicator...............................................................................................160/437
Filtering Symbols............................................................................................................160/437
Viewing Code Descriptions............................................................................................160/437

Object Browser......................................................................................................................161/437
Searching.........................................................................................................................162/437

Source Code Control (Komodo Pro)...............................................................................................164/437
Configuring Source Code Control Integration.......................................................................164/437

Configuring CVS.............................................................................................................165/437
Installing the CVS Executable..................................................................................165/437

CVS Over SSH................................................................................................................165/437
Installing and Configuring Putty on Windows.........................................................165/437
Configuring Windows/Cygwin−SSH or Linux/SSH................................................168/437

Configuring Perforce.......................................................................................................169/437
Configuring Preferences..................................................................................................169/437

Using Source Code Control...................................................................................................169/437
SCC Toolbar, Menus and Output Tab.............................................................................169/437

Source Code Control Toolbar...................................................................................170/437
Source Code Control Menus.....................................................................................170/437
Source Code Control Output Tab and Status Messages...........................................170/437

Source Code Control Commands....................................................................................170/437
File Status Icons..............................................................................................................171/437

Welcome to Komodo

ix



Table of Contents
GUI Builder (Komodo Pro)..............................................................................................................173/437

Creating Dialog Projects........................................................................................................173/437
Modifying an Existing Dialog.........................................................................................174/437
Adding Code to a Dialog.................................................................................................174/437
Testing the GUI...............................................................................................................174/437
Viewing Code in the Komodo Editor..............................................................................175/437
Dialog Project Options....................................................................................................175/437

GUI Builder Overview...........................................................................................................176/437
Workspace.......................................................................................................................177/437
Toolbar............................................................................................................................178/437
Widget Palette Tab..........................................................................................................179/437

Widget Properties.....................................................................................................179/437
Dialog Tab.......................................................................................................................180/437
Menu Tab........................................................................................................................181/437
Status Bar........................................................................................................................182/437

Building GUI Applications....................................................................................................182/437
Adding and Resizing Rows and Columns.......................................................................182/437
Adding Widgets...............................................................................................................183/437
Deleting Widgets.............................................................................................................183/437
Configuring Widget Properties.......................................................................................183/437

Basic Widget Properties............................................................................................183/437
Advanced Widget Properties....................................................................................183/437

Resizing a Widget...........................................................................................................184/437
Attaching Scrollbars to a Widget....................................................................................184/437
Loading a GUI Builder Project into a Frame Widget.....................................................184/437

GUI Builder Preferences........................................................................................................184/437
General Preferences.........................................................................................................184/437
Appearance Preferences..................................................................................................185/437

Tk and Widget Reference......................................................................................................185/437

Using the Rx Toolkit.........................................................................................................................187/437
Creating Regular Expressions................................................................................................188/437

Adding Metacharacters to a Regular Expression............................................................188/437
Setting the Match Type...................................................................................................189/437
Adding Modifiers to a Regular Expression.....................................................................189/437

Evaluating Regular Expressions............................................................................................190/437
Match Results..................................................................................................................190/437

Modifier Examples................................................................................................................191/437
Using Ignore Case...........................................................................................................191/437
Using Multi−Line Mode..................................................................................................192/437
Using Single−Line Mode................................................................................................192/437
Using Multi−line Mode and Single−line Mode..............................................................193/437
Using Verbose.................................................................................................................194/437

Welcome to Komodo

x



Table of Contents
Using the Rx Toolkit

Using Regular Expressions....................................................................................................195/437
Perl..................................................................................................................................195/437
Python..............................................................................................................................195/437
Tcl....................................................................................................................................196/437
PHP..................................................................................................................................196/437

Regular Expressions Primer............................................................................................................198/437
About Regular Expressions...................................................................................................198/437
About Regex Syntax..............................................................................................................199/437
Building Simple Patterns.......................................................................................................199/437

Matching Simple Strings.................................................................................................199/437
Searching with Wildcards...............................................................................................201/437
Searching for Special Characters....................................................................................202/437
Ranges and Repetition.....................................................................................................203/437

Ranges, {min, max}..................................................................................................204/437
Repetition, ?*+..........................................................................................................205/437
Quantifier Summary.................................................................................................207/437

Using Conditional Expressions.......................................................................................207/437
Grouping Similar Items in Parentheses...........................................................................208/437
Matching Sequences........................................................................................................209/437

Building Simple Character Classes..........................................................................210/437
Preventing Matches with Character Classes.............................................................212/437
Compound Character Classes...................................................................................214/437
Character Class Summary.........................................................................................216/437

Matching Locations within a String................................................................................216/437
Searching and Replacing.......................................................................................................218/437

Building Simple Substitution Searches...........................................................................218/437
Modifying Substitution Searches....................................................................................220/437

Substitution Modifier Summary...............................................................................221/437
More Regex Resources..........................................................................................................222/437

Internet Web Sites:..........................................................................................................222/437

Komodo and the Perl Dev Kit..........................................................................................................223/437
Configuring the General Tab.................................................................................................224/437
Configuring the Modules Tab................................................................................................225/437

Specifying Extra Modules For Your Script.....................................................................225/437
Specifying Modules to Trim from the Package..............................................................225/437

Configuring the Files Tab......................................................................................................225/437
Adding Files....................................................................................................................225/437
Editing Files....................................................................................................................225/437
Deleting Files..................................................................................................................225/437

Configuring the Version Tab.................................................................................................226/437

Welcome to Komodo

xi



Table of Contents
Komodo and the Perl Dev Kit

Configuring the Library Paths Tab........................................................................................226/437
Specifying "lib"  and "blib" Directories to Include..........................................................226/437

Configuring the Extra Tab.....................................................................................................226/437
Specifying Icon files........................................................................................................226/437
Specifying Additional Command Line Parameters.........................................................226/437

Visual Package Manager (Komodo Pro)........................................................................................228/437
Installing New Modules.........................................................................................................228/437

Searching for Modules....................................................................................................228/437
Upgrading Existing Modules..........................................................................................230/437

Removing Installed Modules.................................................................................................230/437
Configuring the VPM............................................................................................................230/437

Adding a Repository........................................................................................................231/437

Interpolation  Shortcuts....................................................................................................................232/437
Interpolation Code List..........................................................................................................232/437
Basic Interpolation Code Syntax...........................................................................................233/437

Non−Bracketed Syntax...................................................................................................233/437
Bracketed Syntax.............................................................................................................234/437

Basic Interpolation Options...................................................................................................234/437
Date Code..............................................................................................................................235/437

Date Code Syntax............................................................................................................235/437
Date Code Format Option...............................................................................................235/437

Ask Code................................................................................................................................236/437
Ask Code Syntax.............................................................................................................237/437
Ask Code Options...........................................................................................................237/437
The Query Dialog for "ask"−modified and "orask"−modified Codes............................237/437

Path Code...............................................................................................................................238/437
Path Code Syntax............................................................................................................238/437
Path Code Options...........................................................................................................238/437

Debugger Code......................................................................................................................238/437
Debugger Code Syntax....................................................................................................238/437
Debugger Code Options..................................................................................................239/437

Pref Code...............................................................................................................................239/437
Pref Code Syntax.............................................................................................................239/437

Back−References...................................................................................................................240/437
Back−Reference Syntax..................................................................................................240/437

Customizing Komodo.......................................................................................................................241/437
Appearance Preferences.........................................................................................................241/437
Code Intelligence Preferences...............................................................................................242/437
Debugger Preferences............................................................................................................243/437

Welcome to Komodo

xii



Table of Contents
Customizing Komodo

Editor Preferences..................................................................................................................244/437
Configuring Key Bindings..............................................................................................245/437
Configuring Indentation..................................................................................................246/437
Smart Editing...................................................................................................................247/437

Background Syntax Checking..................................................................................247/437
Configuring Word Completion.................................................................................248/437
Configuring Word Wrap...........................................................................................248/437
Configuring Edge Lines............................................................................................248/437

Save Options...................................................................................................................248/437
File Associations....................................................................................................................249/437
Fonts and Colors Preferences................................................................................................250/437

Fonts................................................................................................................................250/437
Colors..............................................................................................................................251/437
Common Syntax Coloring...............................................................................................252/437
Language−Specific Coloring...........................................................................................252/437

GUI Builder Preferences........................................................................................................253/437
Interactive Shell Preferences.................................................................................................253/437
Internationalization Preferences............................................................................................254/437
Language Help Settings.........................................................................................................255/437

Configuring Reference Locations...................................................................................255/437
Using Language Help......................................................................................................255/437

Language Configuration........................................................................................................255/437
Configuring Perl..............................................................................................................255/437
Configuring PHP.............................................................................................................256/437
Configuring Python.........................................................................................................256/437
Configuring Tcl...............................................................................................................257/437

Tcl Syntax Checking.................................................................................................257/437
Configuring HTML.........................................................................................................258/437

New Files Preferences...........................................................................................................258/437
Printing Preferences...............................................................................................................259/437
Projects and Workspace Preferences.....................................................................................259/437
Configuring Proxies...............................................................................................................261/437
Servers Preferences................................................................................................................261/437
Shared Support Preferences...................................................................................................262/437

Sharing .tip, .pcx and .pdx Files......................................................................................263/437
Sharing Preferences.........................................................................................................263/437

Source Code Control Preferences..........................................................................................264/437
CVS Integration...............................................................................................................264/437
Perforce Integration.........................................................................................................264/437

Web and Browser Preferences...............................................................................................265/437
Windows Integration Preferences..........................................................................................265/437

Welcome to Komodo

xiii



Table of Contents
Feature Showcase..............................................................................................................................267/437

Editing....................................................................................................................................267/437
Code Analysis........................................................................................................................267/437
Debugging..............................................................................................................................267/437
Search.....................................................................................................................................267/437
Tools......................................................................................................................................267/437
Project and Workspace..........................................................................................................267/437

Feature Showcase: Fast String Finder............................................................................................269/437

Feature Showcase: Custom Toolbar...............................................................................................271/437

Feature Showcase: Incremental Search..........................................................................................274/437

Feature Showcase: Find and Open Files with the Open/Find Toolbar........................................276/437

Feature Showcase: Code Completion Snippet...............................................................................279/437

Feature Showcase: Preview Cascading Style Sheets......................................................................281/437

Feature Showcase: Snippet that Prompts for Input......................................................................283/437

Feature Showcase: Google Run Command....................................................................................285/437

Feature Showcase: Using the Interactive Shell..............................................................................287/437

Feature Showcase: Store a Filesystem Layout in a Project..........................................................289/437

Feature Showcase: Using Conditional Breakpoints.......................................................................291/437

Feature Showcase: Store a Custom Template in a Project...........................................................294/437

Feature Showcase: Build a Perl Executable...................................................................................296/437

Feature Showcase: Shortcut to Commonly Used Directory.........................................................300/437

Feature Showcase: Reuse Code Fragments....................................................................................302/437

Feature Showcase: View Code Descriptions in the Code Browser...............................................303/437

Feature Showcase: View the Scope of a Code Construct..............................................................306/437

Welcome to Komodo

xiv



Table of Contents
Feature Showcase: Find Code Constructs......................................................................................309/437

Feature Showcase: Test a Regular Expression with the Rx Toolkit............................................313/437

Feature Showcase: Assign a Key Binding to a Toolbox Item.......................................................316/437

Feature Showcase: Distributing  a Project in a Package................................................................318/437

Feature Showcase: Debug an XSLT Program...............................................................................323/437

Perl Tutorial ......................................................................................................................................326/437
Perl Tutorial Overview..........................................................................................................326/437

Before You Start..............................................................................................................326/437
Perl Tutorial Scenario......................................................................................................326/437

Installing Perl Modules Using VPM or PPM........................................................................326/437
Running the Visual Package Manager (Komodo Pro only)............................................327/437
Running the Perl Package Manager (Komodo Personal)................................................327/437
About PPM and VPM.....................................................................................................327/437

Opening Files.........................................................................................................................328/437
Open the Perl Tutorial Project.........................................................................................328/437
Open the Perl Tutorial Files............................................................................................328/437
Overview of the Tutorial Files........................................................................................328/437

Analyzing the Program..........................................................................................................328/437
Introduction.....................................................................................................................328/437
Setting Up the Program...................................................................................................328/437

Line 1 − Shebang Line..............................................................................................328/437
Lines 2 to 4 − External Modules...............................................................................329/437

Writing the Output Header..............................................................................................329/437
Lines 6 to 7 − Open Files..........................................................................................329/437
Lines 9 to 13 − Print the Header to the Output File..................................................329/437

Setting Up Input Variables..............................................................................................329/437
Lines 15 to 16 − Assign Method Call to Scalar Variable.........................................329/437
Lines 18 to 19 − Method "getline"............................................................................329/437

Starting the Processing Loop...........................................................................................329/437
Line 21 − "while" Loop............................................................................................330/437
Lines 22 to 25 − Extracting a Line of Input Data.....................................................330/437

Converting Characters with a Regular Expression..........................................................330/437
Lines 27 to 31 − "foreach"........................................................................................330/437

Combining Field Reference and Field Data....................................................................330/437
Lines 33 to 35 − hash slice.......................................................................................330/437

Writing Data to the Output File.......................................................................................330/437
Lines 37 to 50 − Writing Data to the Output File.....................................................330/437

Closing the Program........................................................................................................331/437

Welcome to Komodo

xv



Table of Contents
Perl Tutorial

Line 51 − Closing the Processing Loop....................................................................331/437
Lines 52 to 54 − Ending the Program.......................................................................331/437

Run the Program to Generate Output....................................................................................331/437
Debugging the Program.........................................................................................................331/437
More Perl Resources..............................................................................................................333/437

ASPN, the ActiveState Programmer Network................................................................333/437
Documentation................................................................................................................333/437
Tutorials and Reference Sites..........................................................................................333/437

PHP Tutorial .....................................................................................................................................334/437
Overview................................................................................................................................334/437

Before You Start..............................................................................................................334/437
PHP Tutorial Scenario.....................................................................................................334/437

Opening the Tutorial Project..................................................................................................334/437
Overview of the Tutorial Files........................................................................................334/437
Open the PHP Tutorial File.............................................................................................335/437

Analyzing the PHP Tutorial File...........................................................................................335/437
Analyzing guestbook.php......................................................................................................335/437

Introduction.....................................................................................................................335/437
HTML Header.................................................................................................................335/437

Lines 1 to 8 − HTML Header...................................................................................335/437
PHP Declaration and Datafile.........................................................................................335/437

Line 9 − PHP Declaration.........................................................................................335/437
Lines 10 to 18 − Comments......................................................................................335/437
Line 22 − Datafile.....................................................................................................335/437

GuestBook Class.............................................................................................................336/437
Lines 25 to 28 − Class Declaration...........................................................................336/437

GuestBook Function........................................................................................................336/437
Lines 34 to 37 − GuestBook Function......................................................................336/437
Lines 40 to 44 − Check for Valid Form Entry..........................................................336/437
Lines 45 to 46 − Check for Variable Value..............................................................337/437

_getData Function...........................................................................................................337/437
Lines 53 to 58 − _getData Function.........................................................................337/437

outputData Function........................................................................................................337/437
Lines 64 to 66 − outputData Function......................................................................337/437

_createEntryHTML Function..........................................................................................337/437
Lines 72 to 77 − Retrieve Form Data.......................................................................337/437
Lines 80 to 83 − Validate Form Data.......................................................................337/437
Line 86 − Current Date and Time.............................................................................338/437
Lines 89 to 94 − Interpolate Form Data with HTML...............................................338/437

_writeDataFile Function..................................................................................................338/437
Lines 100 to 106 − Open the Data File.....................................................................338/437

Welcome to Komodo

xvi



Table of Contents
PHP Tutorial

Lines 108 to 110 − Write to the Data Files...............................................................338/437
Lines 111 to 113 − Close the Data File....................................................................338/437

addGuestBookEntry Function.........................................................................................338/437
Lines 120 to 125 − Call Functions for Writing Data................................................338/437

outputForm Function.......................................................................................................339/437
Lines 127 to 142 − The Function for HTML Form..................................................339/437

Closing Tags....................................................................................................................339/437
Lines 148 to 151 − Closing Tags..............................................................................339/437

Running the Program.............................................................................................................339/437
Debugging the Program.........................................................................................................340/437
More PHP Resources.............................................................................................................342/437

ASPN, the ActiveState Programmer Network................................................................342/437
Tutorials and Reference Sites..........................................................................................342/437

Python Tutorial .................................................................................................................................343/437
Overview................................................................................................................................343/437

Before You Start..............................................................................................................343/437
Python Tutorial Scenario.................................................................................................343/437

Opening the Tutorial Project..................................................................................................343/437
Overview of the Tutorial Files........................................................................................343/437
Open the Python Tutorial File.........................................................................................344/437

Analyzing the Python Files....................................................................................................344/437
Analyzing preprocess.py.................................................................................................344/437
Setting Up the preprocess.py Program............................................................................345/437

Lines 3 to 57 − Defining a Module Docstring..........................................................345/437
Lines 59 to 65 − Importing Standard Python Modules.............................................345/437
Line 67 − Importing the contenttype Module...........................................................345/437

Defining an Exception Class...........................................................................................345/437
Lines 72 to 88 − Declaring an Exception.................................................................345/437

Initializing Global Objects..............................................................................................346/437
Line 93 − Initializing log..........................................................................................346/437
Lines 98 to 111 − Mapping Language Comments....................................................346/437

Defining a Private Method..............................................................................................346/437
Lines 116 to 123 − Expression Evaluation...............................................................346/437

Preprocessing a File........................................................................................................346/437
Lines 129 to 140 − The preprocess Method Interface..............................................346/437
Lines 145 to 156 − Identifying the File Type...........................................................347/437
Lines 159 to 166 − Defining Patterns for Recognized Directives............................347/437
Lines 178 to 303 − Scanning the File to Generate Output.......................................347/437
Lines 311 to 349 − Interpreting Command Line Arguments...................................347/437
Lines 351 to 352 − Running the Main Method.........................................................347/437

Analyzing contenttype.py................................................................................................347/437

Welcome to Komodo

xvii



Table of Contents
Python Tutorial

Open contenttype.py........................................................................................................348/437
Setting Up the contenttype.py Module............................................................................348/437

Lines 16 to 19 − Importing External Modules..........................................................348/437
Getting Data from content.types.....................................................................................348/437

Lines 29 to 31 − Finding the Helper File (content.types).........................................348/437
Lines 33 to 80 − Loading the Content Types from content.types............................348/437
Lines 85 to 118 − Determining a File's Content Type..............................................349/437

Running the Program.............................................................................................................349/437
Using a Run Command...................................................................................................349/437
Using the Debugger.........................................................................................................350/437

Debugging the Program.........................................................................................................351/437
Explore Python with the Interactive Shell.............................................................................353/437
More Python Resources.........................................................................................................354/437

ASPN, the ActiveState Programmer Network................................................................354/437
Tutorials and Reference Sites..........................................................................................354/437
Preprocessor Reference...................................................................................................354/437

Tcl Tutorial........................................................................................................................................355/437
Tcl Tutorial Overview...........................................................................................................355/437

Before You Start..............................................................................................................355/437
Tcl Tutorial Scenario.......................................................................................................355/437

Opening the Tcl Tutorial Project...........................................................................................355/437
Overview of the Tutorial Files........................................................................................355/437
Opening the Tcl Project File...........................................................................................356/437

Using Tcl Editing Features....................................................................................................356/437
Syntax Coloring...............................................................................................................356/437
AutoComplete and CallTips............................................................................................356/437
Background Syntax Checking.........................................................................................357/437
Code Folding...................................................................................................................357/437

Editing the GUI......................................................................................................................357/437
Opening a GUI Builder Project.......................................................................................357/437
Viewing Project Properties..............................................................................................358/437
Adding Widgets to a Dialog............................................................................................358/437
Resizing Widgets.............................................................................................................359/437
Editing Widget Properties...............................................................................................359/437
Build the GUI..................................................................................................................360/437

Adding Callback Code...........................................................................................................361/437
Open the Program File....................................................................................................361/437
Adding Code to the Radio Buttons.................................................................................361/437

Debugging the Program.........................................................................................................362/437
More Tcl Resources...............................................................................................................363/437

ASPN, the ActiveState Programmer Network................................................................363/437

Welcome to Komodo

xviii



Table of Contents
Tcl Tutorial

Documentation................................................................................................................363/437
Tutorials and Reference Sites..........................................................................................363/437

XSLT Tutorial...................................................................................................................................365/437
XSLT Tutorial Overview.......................................................................................................365/437

Before You Start..............................................................................................................365/437
XSLT Tutorial Scenario..................................................................................................365/437

Opening the Tutorial Project..................................................................................................365/437
Opening the XSLT Tutorial Files....................................................................................365/437
Overview of the Tutorial Files........................................................................................365/437

Analyzing the Program..........................................................................................................366/437
XSLT Header..................................................................................................................366/437

Lines 1 to 3 − XML  and XSLT Declarations...........................................................366/437
HTML Header.................................................................................................................366/437

Line 6 − XSLT "template"........................................................................................366/437
Lines 7 to 11 − HTML Tags.....................................................................................367/437
Line 12 − XSLT apply−templates............................................................................367/437
Lines 13 to 15 − HTML Tags...................................................................................367/437

Format Email Header......................................................................................................367/437
Lines 18 to 21 − Select HEADER content...............................................................367/437
Lines 22 to 29 − call−template.................................................................................367/437

Process Email..................................................................................................................368/437
Lines 33 to 34 − Process First Message....................................................................368/437
Lines 36 to 39 − Process Email Body.......................................................................368/437

Format Email Addresses.................................................................................................368/437
Lines 45 to 52 − Format Email Addresses................................................................368/437

Running the Program.............................................................................................................368/437
Debugging the Program.........................................................................................................369/437
More XSLT Resources..........................................................................................................370/437

ASPN, the ActiveState Programmer Network................................................................370/437
Documentation................................................................................................................370/437

Tutorials and Reference Sites................................................................................................370/437

Run Command Tutorial...................................................................................................................371/437
Run Command Tutorial Overview........................................................................................371/437

Before You Start..............................................................................................................371/437
Run Command Tutorial Scenario....................................................................................371/437
Opening the Tutorial Project...........................................................................................371/437

Running Simple Commands..................................................................................................371/437
Hello, World!..................................................................................................................371/437
Command Output Tab.....................................................................................................372/437
Inserting Command Output.............................................................................................373/437

Welcome to Komodo

xix



Table of Contents
Run Command Tutorial

Filtering Parts of a Document.........................................................................................373/437
Using Advanced Options.......................................................................................................373/437

Specifying a Command's Working Directory.................................................................374/437
Specifying Environment Variables.................................................................................374/437
Running GUI Apps or Running Commands in a Console..............................................375/437

Saving and Rerunning Commands........................................................................................375/437
Rerunning Recent Commands.........................................................................................375/437
Saving Commands in the Toolbox..................................................................................375/437
Saving Commands in a Project.......................................................................................376/437
Editing Saved Command Properties...............................................................................376/437

Using Command Shortcuts....................................................................................................377/437
Shortcuts for the Current File..........................................................................................378/437
Shortcuts for the Current Selection.................................................................................379/437
Using Shortcuts for a Command's Directory...................................................................379/437

Using Command Query Shortcuts.........................................................................................380/437
Introduction.....................................................................................................................380/437
Always Prompting with %(ask)......................................................................................380/437
Prompting When Necessary with %(...:orask)................................................................381/437

Parsing Command Output......................................................................................................381/437
Introduction.....................................................................................................................381/437
Parsing with a Regular Expression..................................................................................382/437
Using "Find in Files".......................................................................................................383/437

Installing Komodo 3.0.......................................................................................................................385/437
Windows................................................................................................................................385/437

Prerequisites....................................................................................................................385/437
Hardware Requirements...........................................................................................385/437
Operating System Requirements..............................................................................385/437
Software Prerequisites on Windows.........................................................................386/437

Upgrading from Previous Komodo Versions..................................................................387/437
Uninstalling...............................................................................................................387/437
Remote Debugging...................................................................................................388/437

Installing Komodo on Windows.....................................................................................388/437
Starting Komodo on Windows........................................................................................388/437
Uninstalling Komodo on Windows.................................................................................389/437

Linux......................................................................................................................................389/437
Prerequisites....................................................................................................................389/437

Hardware Requirements...........................................................................................389/437
Operating System Requirements..............................................................................389/437
Software Prerequisites on Linux...............................................................................389/437
Adding Perl or Python to thePATH Environment Variable....................................391/437

Upgrading from Previous Komodo Versions..................................................................392/437

Welcome to Komodo

xx



Table of Contents
Installing Komodo 3.0

Uninstalling...............................................................................................................392/437
Remote Debugging...................................................................................................392/437

Installing Komodo on Linux...........................................................................................392/437
Starting Komodo on Linux..............................................................................................394/437
Uninstalling Komodo on Linux.......................................................................................394/437

Solaris....................................................................................................................................395/437
Prerequisites....................................................................................................................395/437

Hardware Prerequisites.............................................................................................395/437
Operating System Requirements..............................................................................395/437
Software Prerequisites..............................................................................................395/437

Installing Komodo on Solaris..........................................................................................396/437
Starting Komodo on Solaris............................................................................................398/437
Uninstalling Komodo on Solaris.....................................................................................398/437

Release Notes.....................................................................................................................................399/437
Komodo 3.0: July 2004..........................................................................................................399/437

Code Intelligence.............................................................................................................399/437
Interactive Shell...............................................................................................................400/437
Debugging.......................................................................................................................400/437
Rx Toolkit.......................................................................................................................400/437
Multi−User Features........................................................................................................400/437
Enhanced Search Functionality.......................................................................................401/437
Macro Enhancements......................................................................................................401/437
Custom Toolbars, Menus and Icons................................................................................401/437
Editing Enhancements.....................................................................................................401/437
Miscellaneous..................................................................................................................401/437
Documentation................................................................................................................402/437

Release History......................................................................................................................402/437
Komodo 3.0 Beta 4: June 2004.......................................................................................402/437
Komodo 3.0 Beta 3: May 2004.......................................................................................402/437
Komodo 3.0 Beta 2: May 2004.......................................................................................402/437
Komodo 3.0 Beta 1: May 2004.......................................................................................402/437
Komodo 2.5.2: January 2004..........................................................................................402/437
Komodo 2.5.1: October 2003..........................................................................................403/437
Komodo 2.5 for Windows, Linux: September 2003.......................................................404/437
Komodo 2.5 Technology Preview 1 for Solaris: August 2003.......................................407/437
Komodo 2.5 Beta 1 for Windows, Linux: August 2003.................................................407/437
Komodo 2.5 Alpha 2: July, 2003....................................................................................407/437
Komodo 2.3: February, 2003..........................................................................................407/437
Komodo 2.3 beta 2: February, 2003................................................................................409/437
Komodo 2.3 beta 1: January, 2003..................................................................................409/437
Komodo 2.0.1 for Linux: November, 2002.....................................................................409/437

Welcome to Komodo

xxi



Table of Contents
Release Notes

Komodo 2.0.1 for Windows: October, 2002...................................................................409/437
Komodo 2.0 beta 3 for Linux: October, 2002.................................................................409/437
Komodo 2.0 beta 2 for Linux: September, 2002.............................................................409/437
Komodo 2.0 for Windows: September, 2002..................................................................409/437
Komodo 2.0 beta 2 for Windows: September, 2002.......................................................411/437
Komodo 2.0 beta 1 for Linux: September, 2002.............................................................411/437
Komodo 2.0 beta 1 for Windows: August, 2002.............................................................411/437
Komodo 1.2.9: July, 2002...............................................................................................411/437
Komodo 1.2.7 RC1 for Windows and Linux: March, 2002............................................412/437
Komodo 1.2 for Windows and Linux: December, 2001.................................................412/437
Komodo 1.2 beta 1 for Linux: November 2001..............................................................414/437
Komodo 1.2 beta 2 for Windows: November, 2001.......................................................414/437
Komodo 1.2 beta 1 for Windows: October, 2001...........................................................414/437
Komodo 1.1: June, 2001.................................................................................................414/437
Komodo 1.0: April, 2001................................................................................................415/437
Komodo .1: November, 2000..........................................................................................415/437

Known Issues.........................................................................................................................415/437
Installation Issues............................................................................................................416/437
Startup Issues...................................................................................................................416/437
Editing Issues..................................................................................................................416/437
Debugging Issues............................................................................................................417/437
Other Issues.....................................................................................................................418/437
Linux / Solaris Issues......................................................................................................419/437

Komodo FAQ....................................................................................................................................421/437
Komodo doesn't start.............................................................................................................421/437
I can't see my Left or Right Pane...........................................................................................422/437
I can't see my Bottom Pane....................................................................................................422/437
I want to maximize the Editor Pane.......................................................................................422/437
How do I know if I'm debugging?.........................................................................................422/437
How do I know if I'm editing?...............................................................................................423/437
How can I add command−line arguments to my program for debugging?...........................423/437
Komodo crashes. What can I do?..........................................................................................423/437

Step 1: Creating the error log files..................................................................................423/437
Step 2: Locating the error log files..................................................................................424/437
Step 3: Verifying and sending the files to ActiveState...................................................425/437

Why is Komodo so big?.........................................................................................................425/437
I already have Mozilla. Why do I need to have two versions?..............................................425/437
I'm having trouble debugging PHP. What do I do?...............................................................426/437

Confirm PHP Configuration............................................................................................426/437
Common PHP Configuration Problems..........................................................................426/437
Windows−Specific Configuration Issues........................................................................427/437

Welcome to Komodo

xxii



Table of Contents
Komodo FAQ

Version Error Messages..................................................................................................427/437
How do I emulate sessions in PHP debugging?....................................................................427/437
How do I configure Virtual Hosting on an Apache Web server?..........................................427/437
I moved my Komodo installation on Linux, and am now getting Perl debugging errors.....428/437
How do I prevent the dialog from displaying every time I start the debugger?....................428/437
Why do I get a CGI security alert when debugging PHP?....................................................429/437
I'm using Windows 98. When I start Komodo, I get the error "Page fault in
 MSVCRT.DLL"....................................................................................................................429/437
When I click Check Configuration on the Start Page, Komodo reports that a language
 that is installed on my system is not available. Why?..........................................................429/437
My screen goes black for a second or two whenever I open files for which Komodo
 performs background syntax checking. Why?......................................................................429/437
Why does VPM display a "Failure to Connect To Web Server" message?...........................430/437
Why can't I find the module that I want using the Visual Package Manager (VPM)?..........430/437
How can I run additonal CVS commands from within Komodo?.........................................430/437

License and Copyrights....................................................................................................................432/437
Komodo License....................................................................................................................432/437

Sending Feedback.............................................................................................................................437/437
Comments and Feature Requests...........................................................................................437/437
Reporting Bugs......................................................................................................................437/437

Welcome to Komodo

xxiii



Welcome to Komodo
Komodo is ActiveState's cross−platform, multi−language Integrated Development Environment (IDE).
Komodo supports development in numerous languages, including Perl, Python, PHP, XSLT, Tcl,
JavaScript, and more.

Get started fast with
Komodo's Sample Project.

Upgrading? See what's new in
this release.

Feature Showcase: Fast
feature demos showing
advanced search functionality,
tool usage and more.

Komodo Tutorials: Perl,
Python, PHP, Tcl, XSLT and
Run Commands.

Komodo Professional includes
all the features of Komodo
Personal, plus:

Source Code Control• 
Visual Package
Manager

• 

GUI Builder• 

Getting started with Komodo is as easy as opening a file and beginning to edit. However, to ensure that
you don't miss any of Komodo's features, take a look at the components of the Komodo workspace
described below.

Next, Get Started Fast with Komodo's Sample Project. Use the Sample Project to familiarize yourself
with Komodo's project management, editing features and debugging functionality.

Open the Sample Project and Sample Files• 
Edit a Sample Program• 
Debug a Sample Program• 

Starting Komodo

Windows

From within the Windows environment, use one of the following methods to launch Komodo:

double−click the Komodo desktop icon• 
launch Komodo from the Windows program menu (Start|Programs|ActiveState Komodo
3.0|Komodo)

• 

right click a file name in Windows Explorer (and other dialogs that support the standard
Windows right−click context menu) and select Edit with Komodo

• 

To start Komodo from a command prompt, enter:

    komodo [options] [filenames]

Multiple filenames may be specified; all specified filenames will be loaded in the Komodo editor pane.

Welcome to Komodo 1/437



The following command−line options are available:

Help: −h or −−help• 
Show Komodo version:−V or−−version• 
Open at a specified line number:−l line or −−line=line• 
Open with a specified range selected:−s range or −−selection=range
(e.g.komodo −s 1,5−2,15 example.py would open example.py and select from line
1 and column 5 to line 2 column 15)

• 

Unix

To start Komodo from a shell prompt, enter:

    komodo [options] [filenames]

The same options described in the Windows command prompt section above apply.

Desktop icons and taskbar applets are not added automatically during installation on Unix. Check your
window manager documentation for information on creating these manually. A choice of Komodo icons
is available. By default, the icon files (.xpm) are stored in the Komodo installation directory.

The Komodo Workspace

The Start Page

Komodo's Start Page is displayed by default when Komodo is first opened, and the Start Page tab persists
when other files are opened. The Start Page provides quick access to recently opened files and projects.
By default, the Start Page also displays links to tutorials and Komodo's Sample Project, as well as the Tip
of the Day. Select Edit|Preferences|Appearance to change the contents of the Start Page, or to configure
the number of recent files and projects.

To clear the names of selected files or projects from the Start Page, check the boxes next to the filenames,
then click Remove. To clear the complete list of files or projects, click the "X" button at the top right of
each list.

Welcome to Komodo 2/437



Title Bar

The title bar displays the path and name of the active file. During debugging, the title bar indicates the
state of the debugger. See Debugging Programs for more information.

Menus

The default drop−down menus are: File, Edit, Code, View, Debug, Project, Toolbox, Tools, Window, and
Help. The functions accessed from each menu are described in detail in the relevant section of the User
Guide. For example, the items accessed from the Debug menu are described in Debugging Programs.

Context Menus

Komodo displays right−click context menus with options relative to the area of Komodo where the option
was invoked, depending the location of the mouse pointer. Use the left mouse button to select items from
context menus.

Welcome to Komodo 3/437



Menu Bar Areas and Toolbar Areas: Options to view or hide individual toolbars and toolbar
text.

• 

Projects Tab (Project Name): Options to open, save, activate, and close the projects, and to add a
file to the selected project.

• 

Projects Tab (File Name): Options to edit, remove or export the selected file ,and access to
source code control commands.

• 

Toolbox Tab: Options to work with the specified component.• 
Editor Pane (File Editing Area): Options to cut, copy, and paste text, to set a breakpoint, and to
edit the file properties and settings.

• 

Editor Pane (Tabs): Options to close the selected file and to view the file's properties and
settings.

• 

Bottom Pane: The context menus available on tabs in the Bottom Pane (e.g. the Debug tab and
the Breakpoints tab) contain subsets of Komodo's top−level menus.

• 

Toolbars

To hide or show toolbars, or to hide or show button text, do one of the following:

From the View menu, select Toolbars.• 
Right−click on a menu bar or toolbar, and toggle the check mark beside the pertinent option.• 
From the Edit menu, select Preferences. Click the Appearance option and check or uncheck the
desired options.

• 

The Standard Toolbar provides quick access to common editing functions. Launch the Komodo User
Guide by clicking the Help button.

The Tools Toolbar contains the commonly used commands on the Tools menu, including Preview in
Browser, the Regular Expression Toolkit, the Visual Package Manager (VPM), the interactive shell, and
the Object Browser.

Welcome to Komodo 4/437



The Workspace Toolbar toggles the main components of the Komodo workspace. Use this toolbar to
show/hide the Left Pane, Bottom Pane and Right Pane, and to display or shift focus to a specific tab in
one of these panes (e.g. the Toolbox tab).

The Debug Toolbar provides quick access to common debugging functions, such as Step In and Step
Over. For more information about debugging programs, see Debugging Programs.

Use the Open/Find Toolbar to open files and search for strings. Find strings in files currently displayed in
the editor or in files not currently open in Komodo but located on the filesystem. See Open/Find Toolbar
for more information.

The Source Code Control Toolbar (available only in the Professional Edition of Komodo) makes it easy
to work with files that are stored in Perforce or CVS. For more about using the Source Code Control
Toolbar, see Source Code Control (Komodo Pro).

The Macros Toolbar makes it easier to record, play and save macros. For more information see Macros.

It is also possible to create Custom Toolbars consisting of items that are otherwise stored in the Toolbox
or Komodo projects (e.g. run commands, code snippets and directory shortcuts).

Welcome to Komodo 5/437

http://www.perforce.com/
http://www.cvshome.org/


Left Pane

The Left Pane of the Komodo workspace contains the Projects tab and theCode tab.

Projects Tab

The Projects tab displays projects that are currently open. Hide or display the components contained in a
project by clicking the plus sign to the left of the project name. To display the Projects tab, select
View|Tabs|Projects, or use the associated key binding.

Related Topics:

Managing Projects and Files• 
Managing Tabs and Panes• 

Code Tab

The Code tab displays a hierarchical view of all code symbols (for example, variables, methods, imports)
in an open file. Symbols can be sorted and filtered, and the current scope of a symbol can be located. The
lower part of the Code Browser provides additional documentation (when available) on program
components. To display the Code tab, select View|Tabs|Projects, or use the associated key binding.

Welcome to Komodo 6/437



Related Topics:

Code Browser• 
Managing Tabs and Panes• 

Right Pane

The Right Pane of the Komodo workspace contains the Toolbox and, optionally, a Shared Toolbox.

Toolbox Tab

Use the Toolbox tab to manage and store Komodo components (for example, frequently used files, code
snippets, commands, and URLs). Add items to the Toolbox, as well as to folders within the Toolbox.
Items can be imported to the Toolbox and exported as Komodo project files and packages. Items added to
the Toolbox are displayed with associated icons for easy identification. To display the Toolbox tab, select
View|Tabs|Toolbox, or use the associated key binding.

Welcome to Komodo 7/437



Related Topics:

Using the Toolbox• 
Managing Tabs and Panes• 

Shared Toolbox Tab

A Shared Toolbox has the same functionality as the Toolbox except that it can be shared among multiple
users. For example, use a Shared Toolbox to store code snippets that are frequently used by a number of
programmers. The Toolbox tab is only available if the Shared Toolbox preference has been set (select
Edit|Preferences|Shared Support).

Related Topics:

Sharing Toolboxes• 
Managing Tabs and Panes• 

Welcome to Komodo 8/437



Editor Pane

The large pane in the middle of the Komodo workspace is the Editor Pane. The Editor Pane is used for
editing and debugging. Each open file has a corresponding tab at the top of the Editor Pane. Change the
order of the tabs by clicking and dragging tabs to the desired position. The name of the active file (that is,
the file that is currently displayed in the Editor Pane) is displayed in bold text. Use the left and right arrow
buttons on the right side of the tabs to scroll though open files. Use the close button "X" on the right side
of the tab display to close the active file. An asterisk beside the filename indicates that the file has been
changed since it was opened, and needs to be saved. If a file is under source code control, a file status
icon to the left of the filename indicates its current status.

Related Topics:

Editing Files• 
Managing Projects and Files• 
Managing Tabs and Panes• 

Bottom Pane

The Bottom Pane spans the width of the Komodo workspace and displays at the bottom of the screen. The
Bottom Pane contains the following tabs:

Breakpoints Tab: manage breakpoints and spawnpoints in the current debugging session(s)• 
Command Output Tab: displays the results of commands run in the Run Command dialog box• 
Find Results 1 and Find Results 2 Tabs: display the results of the Find All function• 
SCC Output Tab: displays details of source code control commands, such as editing or checking
in files

• 

Interactive Shell Tab: displayed when the interactive shell is launched as a stand−alone tool or
from within a debugging session

• 

Debug Tab: consolidates views of the debugger output, call stack, program variables (local and
global), and watched variables.

• 

Welcome to Komodo 9/437



Managing Tabs and Panes

Use the View menu, Standard Toolbar or Komodo key bindings to choose which tabs are displayed in the
Komodo workspace. Use the Standard Toolbar to show and hide the Left Pane, Right Pane and Bottom
Pane.

Showing and Hiding Tabs

To display a tab in the Left Pane, Right Pane or Bottom Pane, select View|Tabs|<TabName>, or see
Komodo's default key bindings (Help|List Key Bindings) for the appropriate keyboard shortcut.
Alternatively, click the Show Specific Tab button on the Standard Toolbar.

Showing and Hiding Panes

To show and hide the Left Pane, Right Pane or Bottom Pane, click the associated button on the Standard
Toolbar. Click the close arrow in the top right corner of a pane to close it.

Resizing Panes

When you are focusing on coding alone, you may want to maximize the Editor Pane. To increase the size
of the Editor Pane, hide the Left Pane and the Right Pane. The Left, Right and Bottom Panes can be
resized by clicking and dragging.

Enabling Full Screen Mode

To take advantage of as much of the Komodo workspace as possible, select View|Full Screen. When Full
Screen mode is enabled, the workspace is maximized, and the toolbars and status bar are hidden. To
restore the previous view, select View|Full Screen again.

Welcome to Komodo 10/437



Getting Started with the Sample Project

Komodo's sample project includes a number of programs in different languages. Use these sample
programs to familiarize yourself with Komodo's functionality.

Opening the Sample Project and Files

On Komodo's Start Page, click Open Sample Project. The Sample Project and its associated files will
display on the Projects tab.

To open a sample program, double−click the file name on the Projects tab. The contents of the file will
display in the Editor Pane.

Editing a Sample Program

Komodo includes sample programs written in Perl, Python, JavaScript, PHP, Tcl, and XSLT. Each
program is annotated with comments and exercises that describe Komodo's language−specific features.
Open the sample programs for languages that interest you, and read the comments to explore Komodo's
editing and debugging functionality.

Debugging a Sample Program

Komodo provides debugging support for Perl, Python, PHP, Tcl and XSLT. Komodo works with the core
language distribution for Perl, Python and PHP to provide interpreter support. XSLT, on the other hand, is
entirely self−contained. To debug the sample files for Perl, Python, PHP and Tcl, you must configure the
location of the language interpreter. See Configuring the Perl Debugger, Configuring the Python
Debugger, Configuring the Tcl Debugger, or Debugging PHP for instructions. Then open the sample file
for the desired language, and view the comments in the "Debugging" section. General debugging
functionality is discussed below.

Breakpoints: In the sample program, click on the gray margin to the immediate left of the Editor
Pane. A green circle will appear, indicating that a breakpoint has been set. When you run the
debugger, program processing will stop at lines where breakpoints have been set.

1. 

Start / Step Over / Step In: To start debugging, click the "Go" button on the Debug Toolbar.
When debugging begins, the Bottom Pane will be displayed beneath the Editor Pane in the
Komodo workspace. The program will run until a breakpoint is encountered; when program
execution pauses at a breakpoint, click "Step In" to move through the program in single line
increments, or "Step Over" to execute the entire function (as applicable), or "Step Out" to execute
the remainder of a function (as applicable).

2. 

Welcome to Komodo 11/437



Debug Tab: The tab labelled Debug: <filename> is displayed when debugging begins. In
addition to the debug output, the Debug tab displays the call stack, variables, and variable values.

3. 

Welcome to Komodo 12/437



Working with Projects
Use Komodo's Project Manager to organize Komodo "components".
Components are objects that are relevant to a project. For example, a project
might contain all the components related to a specific software product: the
product's source files, templates for creating new source files, snippets for
adding repetitive sections of code, and run commands for building the output.
By using projects to organize components, all the aspects of a project can be
quickly accessed from a single location.

The top level of organization is the project file, which can contain files,
folders and components like run commands and macros. Projects are XML
files stored on disk with a ".kpf" extension. While these project files can be
manually edited, it is unnecessary; all project maintenance can be performed
within the Project Manager. If you manually edit the project file, make a
backup copy first; invalid construction within a project file prevents it from
loading.

Components within the Project Manager and the Toolbox are manipulated by
an intuitive drag−and−drop interface, by context menus, or via the Project and
Toolbox drop−down menus. Options for individual components are accessed
via the Project drop−down menu, or via right−click context menus.

Use Komodo's sample project to become familiar with project functions.

Feature Showcases

create a custom
toolbar

• 

create a
directory
shortcut

• 

export and
import a
package

• 

assign a custom
keybinding to a
component

• 

store a template
in a project

• 

Displaying the Project Manager

The Project Manager is displayed on a "tab" on the Right Pane of the Komodo workspace. It is displayed
or hidden via any of the following methods:

View|Tabs|Projects: Use the View drop−down menu to modify Komodo's display characteristics.• 
Key Binding: The default key binding for opening and closing the Projects tab is
'Ctrl'+'Shift'+'P'. See Configuring Key Bindings to alter or view the current assignment.

• 

Workspace Toolbar: If the Workspace Toolbar is displayed, click the "Show/Hide Left Pane"
button. (Select View|Toolbars|Workspace to display the toolbar.) Alternatively, click the "Show
Specific Tab" button and select Projects.

• 

Creating Projects

Projects are created via any of the following methods:

File Menu: On the File menu, select New|New Project.• 
Project Menu: On the Project menu, click New Project.• 

Working with Projects 13/437



Project Manager: New Project Button: On the Projects tab, click the New Project button.• 

When creating a new project, you are prompted to select a directory where the project file is stored. The
project filename becomes the project name displayed in the Project Manager (without the ".kpf"
extension).

New projects contain no components. See Adding Components to Projects for information about
populating projects.

Opening Projects

Existing projects are opened by any of the following methods:

File|Open Menu: Select File|Open|Project.• 
Project Menu: Select Project|Open Project• 
Project Manager: On the Projects tab, click the Open Project button.• 

Recently opened projects can be accessed from the Komodo Start Page, or from the File|Recent Projects
menu. (The number of recently opened projects is determined by the Most Recently Used preference.)

The project name and associated files are displayed on the Projects tab. Opening a project only opens the
project file, not the components associated with the project.

Setting the Active Project

Multiple projects can be open at the same time. Components in any open project can be used. However,
only one project at a time is "active". The active project is displayed in bold text. When the Add
Component button in the Project Manager is invoked, the component is added to the active project,
regardless of the project that is currently highlighted.

To set the active project, right−click the desired project name and select Make Active Project, or select
Project|Make Active Project from the drop−down menu.

Adding Components to Projects

Projects are organization containers for "components". Components are items like files, folders, snippets,
macros, etc. For information about individual components, refer to the relevant section of the
documentation for the specific component.

Working with Projects 14/437



Filesystem−based components consists of items that exist as entities on the disk: files, dialog projects and
templates. Komodo−specific components exist only in Komodo, and are not stored as external disk
entities. Komodo−specific components include open shortcuts, folders, snippets, run commands, URL
shortcuts, macros and custom menus and toolbars.

Within projects, filesytem−based components are merely references; they cannot be moved or deleted
from within Komodo; moving them between projects and the Toolbox, or deleting them from projects or
the Toolbox, has no effect on their actual disk−based location or their contents. On the other hand,
Komodo−specific components (such as macros and snippets) do not exist outside of Komodo; therefore,
they can be moved and copied (for example, from the Toolbox to the Project Manager) and deleted
independently of the filesystem.

For example, when a snippet (a Komodo−specific component) is copied from the Project Manager to the
Toolbox, a new copy of the snippet is created; the original version still exists in the original location.
Subsequent modifications of the snippet in the Toolbox do not change the version of the snippet stored in
a project. On the other hand, when the contents of a file (a filesystem−based component) are changed, the
changes apply regardless of the location from which the file is invoked.

To add a component to a project:

Project|Add: Use the Project drop−down menu. If multiple projects are open, the component is
added to the project that is currently active.

• 

Project|Add|project_name: When a project name is selected in the Project Manager, the selected
project's name is also displayed in the Project drop−down menu. Components can be added
directly to that project.

• 

Add Button: Use the Add  button on the Project tab. If multiple projects are open, the
component will be added to the project that is currently selected.

• 

Context Menu: Right−click a project name and select Add|component.• 
Drag and Drop: Drag and drop components from:

Drag−and−Drop−Aware Applications: Filenames can be dragged from drag−and−drop
applications (such as Windows Explorer).

♦ 

Project Manager or Toolbox: Components can be dragged between projects, the
Toolbox and container components (such as folders).

♦ 

Editor File Name Tabs: When a file is open in the editor pane, drag and drop from the
tab that displays the filename to a project.

♦ 

• 

Import from Filesystem: Right−click a project and select Import from File System.• 
Cut/Copy/Paste: All components have a right−click menu that includes the options Cut, Copy
and Paste. Use these options to move components between projects, the Toolbox and container
components.

• 

Some components have special component−specific mechanisms for being added to projects. For
example, snippets can be created and added to a project in one step by selecting a block of text in the
Editor Pane and dragging it onto a project. URL shortcuts are created by dragging and dropping a URL
from a browser address bar or from the Editor Pane onto a project. Refer to the specific component
sections for more information about these options.

Working with Projects 15/437



To remove a component from a project, click the desired component and press 'Delete', or right−click the
component and select Delete from the context menu.

Komodo−specific components (such as run commands, macros, etc) are permanently deleted.
Filesystem−based components (such as files and dialog projects) are not; only the reference to the
component within the project is removed.

Project Display Settings

Use the button on the top right of the Project Manager to select the fields that are displayed in the Project
Manager. Click the column headings to organize the items according to the contents of any column.

Column contents depend on the type of component. For example, the Status and Depot Rev display
options only have contents if the component is part of a source code control repository.

The following columns can be displayed:

Date: The date from the filesystem when the component was last saved.• 
Size: The filesystem size of the component.• 
Status: The source code control status of the component.• 
Rev: When a component is part of a source code control repository, this column displays the
revision number of the local version of the file.

• 

Depot Rev: When a component is part of a source code control repository, this column displays
the revision number of the repository version of the file.

• 

Action: When a component is part of a source code control repository, this column displays the
current action (if any) being performed on the file. For example, if a file is currently opened for
editing, the action is "edit".

• 

Name: The name of the component. For filesystem−based components (such as files and dialog
projects), the name is equivalent to the filename. For Komodo−specific components (such as
macros and run commands), the name is the user−defined name assigned to the component.

• 

Saving Projects

If an asterisk is displayed beside the project name, the project has changed since it was opened or last
saved. This happens not only when components are added, edited or removed in the Project Pane, but
also when debugging options are changed for files in the project. To save a project:

File Menu: On the File menu, click Save Project.• 
Project Menu: On the Project menu, click Save Project. This saves the active project. If a
project name is currently highlighted in the Project Manager, the Project menu contains an
option for saving the selected project (Project|project_name|Save Project).

• 

Project Manager: Save Project Button: On the Projects tab, click the Save Project button.• 

Working with Projects 16/437



Project Context Menu: Right−click the desired project and select Save Project.• 

The mechanisms described above can also be used to save a project to a new project file by selecting
Save Project As... rather than Save. Filesystem−based components (such as files and dialog boxes) are
relative references rather than actual entities; in the new project, the reference to the location of the
component is preserved. Komodo−specific components (such as macros and run commands) are copied
to the new project; there are independent versions of the component in the original project and in the new
project.

Refreshing Project Status

The Refresh Status option checks read/write disk status for the project file and for filesystem−based
components (such as files and dialog projects) within the project. If the project contains files of a
language for which "code intelligence" is supported and enabled (as configured in the Code Intelligence
Preferences), Refresh Status also updates the code intelligence database with the contents of those files.

If the project or its components are stored in a source code control system, Refresh Status also checks
the repository status of the file. Komodo determines whether a file is contained in an SCC repository by
the following methods:

Perforce: analysis of the client configuration• 
CVS: analysis of the CVS control directories• 

Importing and Exporting Projects via Packages

Entire projects (including all the components contained in a project) can be exported to a "package" file
for distribution to other Komodo users or for the sake of archiving. Packages are compressed archive
files that contain the project from which the Export Package option was invoked. The Export Package
option differs from the Export as Project File option (provided for project components) in that Export
Package creates a self−contained archive file that contains copies of all the filesystem−based
components (such as files and dialogs). Export as Project File, on the other hand, only contains
Komodo−specific components (such as snippets and run commands).

To export a project and its contents to an archive, select Project|project_name|Export Package from the
drop−down menu, or right−click the project and select Export Package.

The Package Export Wizard prompts for a Package Name and a Export Location. The Package Name is
the file in which the package is stored; it will have the extension ".kpz", and can be opened by any
archiving utility that supportslibz (for example WinZip).

Exported packages can only be imported into "container" objects in Komodo, such as projects, the
Toolbox, and folders within projects and the Toolbox.

Working with Projects 17/437



To import the contents of a package into a project, right−click the project to which you want to import
the package, and click Import Package. The Package Import Wizard prompts for the name of the
package and the location on disk where the files will be extracted. Click Next and then click Finish to
complete the import.

For information about importing packages to the Toolbox or a folder, see Toolbox − Import Package and
Folders − Import Package for more information.

Importing Files from the File System

This option creates files within a project based on the directory structure and file contents of a local or
network filesystem. File references within the project are created for imported files; folders are created
for directories (depending on the configuration of the import options). To import a filesystem into a
project:

Project Menu: On the Project menu, click Import from File System. This imports the specified
filesystem (according to the criteria described below) into the current active project. If a project
name is currently highlighted in the Project Manager, the Project menu contains an option for
importing into the selected project (Project|project_name|Import from File System).

• 

Project Context Menu: Right−click the desired project and select Import from File System.• 

Configure the following import options:

Directory to import from: Specify the directory from which you want to import files. Use the
Browse button to navigate the file system.

• 

Files to include: Specify the filenames to include. Use wildcards ("*" and "?") to specify groups
of files. Separate multiple file specifications with semicolons. If the field is left blank, all files in
the specified directory are imported.

• 

Files and directories to exclude: Specify the file and directory names to exclude. Use wildcards
("*" and "?") to specify groups of files. Separate multiple file specifications with semicolons. If
the field is left blank, no files in the specified directory are excluded.

• 

Import Subdirectories Recursively: Select this check box to import directories (and files
contained in those directories) located beneath the directory specified in the Directory to import
from field. This check box must be checked in order to specify the "Import Directory Structure"
option as the Type of folder structure to create.

• 

Type of folder structure to create:
Import directory structure: If the Import Subdirectories Recursively box is selected and
this option is selected, Komodo creates folders within the project that represent imported
directories. Thus, the directory structure is preserved within the project.

♦ 

Make a folder per language: If this option is selected, imported files are organized into
folders according to the language indicated by file pattern in the filename. File
associations are configured in the Komodo Preferences. Each folder is named after the
associated language, for example, "Perl files", "XML files", etc. Files that don't
correspond to a known file pattern are stored in a folder called "Other files".

♦ 

• 

Working with Projects 18/437



Make one flat list: If this option is selected, all the imported files are placed directly
under the project from which the Import from File System command was invoked.

♦ 

Source Code Control

Source code control refers to projects and/or components stored in a source code control depot (such as a
CVS or Perforce repository). There are two aspects to source code control within projects: source code
control on the project file itself, and source code control on components contained in projects.

When Komodo integration with a source code control system is configured, icons in the Project Manager
display the SCC status of the project file and components contained in the project. See file status icons in
the source code control documentation for more information about these icons.

Source code control functions (such as adding files to an SCC repository, or opening files contained in a
repository for editing) can be performed both on the project file, and on the components contained in the
project. To access SCC commands for a project file:

Project Menu: Click the project name in the Project Manager, then select
Project|project_name|Source Control).

• 

Project Context Menu: Right−click the desired project and select Source Control.• 

To access SCC commands for the components contained in a project:

Project Menu: Click the project name in the Project Manager, then select
Project|project_name|Source Control on Contents).

• 

Project Context Menu: Right−click the desired project and select Source Control on Contents.• 

See Source Code Control Commands for a description of each of the commands.

Reverting Projects

If a project has been altered but has not been saved, use the Revert Project option to undo the changes.
To access the Revert Project option:

Project Context Menu: Right−click the desired project and select Revert Project.• 
Project Menu: Select Project|Revert Project or Project|project_name|Revert Project.
Project|Revert Project reverts the active project. If a project name is currently highlighted in the
Project Manager, the Project menu contains an option for reverting the selected project
(Project|project_name|Revert Project).

• 

Working with Projects 19/437



Closing Projects

Closing a project removes it from the Project Manager. To close a project:

File Menu: On the File menu, click Close Project.• 
Project Menu: On the Project menu, click Close Project. This closes the active project. If a
project name is currently highlighted in the Project Manager, the Project menu contains an
option for closing the selected project (Project|project_name|Close Project).

• 

Project Context Menu: Right−click the desired project and select Close Project.• 

If the project has changed since it was last saved, you are prompted to save it. If files contained in the
project are open in the editor, you are asked if you wish to close them.

Deleting Projects

When a project is deleted, the project file is deleted from disk; Komodo−specific components (such as
run commands and macros) stored in the project are also deleted. Filesystem−based components (such as
files and dialog projects) are not deleted. To delete a project, delete the project file from the filesystem.

Project Properties

The Project Properties dialog box contains information about the project file, such as its size, its location
on disk, and its source code control status.

To access the Project Properties dialog box, right−click the desired project name and select Properties, or
click the desired project and select Project|project_name|Properties from the drop−down menu.

Working with Projects 20/437



Using the Toolbox

The Komodo Toolbox stores components that are frequently used. The
Toolbox is similar to a persistent project; however, rather than storing
components that are specific to a particular project, it stores components that
are used for a variety of tasks.

The Projects Manager and the Toolbox share a common set of components.
Components are of two types: Komodo−specific components (such as macros,
run commands and custom menus) and filesystem−based components (such as
files and dialog projects).

Components within the Project Manager and the Toolbox are manipulated
using an intuitive drag−and−drop interface, by context menus, or via the
Project and Toolbox drop−down menus. Component options are accessed via
the drop−down menus, or via right−click context menus.

Feature Showcases

create a custom
toolbar

• 

create a
directory
shortcut

• 

import a
filesystem

• 

assign a custom
keybinding to a
component

• 

store a template
in a project

• 

Displaying the Toolbox

The Toolbox is displayed on a "tab" in the Right Pane of the Komodo workspace. It is displayed or
hidden via any of the following methods:

View|Tabs|Toolbox: Use the View drop−down menu to modify Komodo's display characteristics.• 
Key Binding: The default key binding (in the default key binding scheme) for opening and
closing the Toolbox tab is 'Ctrl'+'Shift'+'T'. See Configuring Key Bindings to alter or view the
current key assignment.

• 

Workspace Toolbar: If the Workspace Toolbar is displayed, click the "Show/Hide Right Pane"
button. (Select View|Toolbars|Workspace to display the toolbar.) Alternatively, click the "Show
Specific Tab" button and select Toolbox.

• 

Adding Components to the Toolbox

The Toolbox is an organizational container for frequently used "components". Components are items like
files, folders, snippets, macros, etc. For information about individual components, refer to the relevant
section of the documentation.

Filesystem−based components consists of items that exist as entities on the disk: files, dialog projects and
templates. Komodo−specific components exist only in Komodo, and are not stored as external disk
entities. Komodo−specific components include open shortcuts, folders, snippets, run commands, URL
shortcuts, macros and custom menus and toolbars.

Within the toolbox, filesytem−based components are merely references; they cannot be moved or deleted
from within Komodo; moving them between projects and the Toolbox, or deleting them from projects or

Using the Toolbox 21/437



the Toolbox, has no effect on their actual disk−based location or their contents. On the other hand,
Komodo−specific components do not exist outside of Komodo; therefore, they can be moved and copied
(for example, from the Toolbox to the Project Manager) and deleted independently of the filesystem.

For example, when a snippet (a Komodo−specific component) is copied from the Project Manager to the
Toolbox, a new copy of the snippet is created; the original version still exists in the original location.
Subsequent modifications of the snippet in the Toolbox do not change the version of the snippet stored in
the Project Manager. On the other hand, when the contents of a file (a filesystem−based component) are
changed, the changes apply regardless of the location from which the file is invoked.

To add a component to the Toolbox:

Toolbox|Add: Use the Toolbox drop−down menu.• 
Toolbox|Add|folder_name: When a folder name is selected in the Toolbox, the selected folder's
name is also displayed on the Toolbox drop−down menu. Components can be added directly to
that folder.

• 

Add Button: Use the Add  button on the Toolbox tab.• 
Drag and Drop: Drag and drop components from:

Drag−and−Drop−Aware Applications: Filenames can be dragged from drag−and−drop
applications (such as Windows Explorer).

♦ 

Project Manager or Toolbox: Components can be dragged between projects, the
Toolbox and container components (such as folders).

♦ 

Editor Filename Tabs: When a file is open in the Editor Pane, drag and drop from the
tab that displays the filename to the Toolbox.

♦ 

• 

Import from Filesystem: Right−click a folder and select Import from File System.• 
Cut/Copy/Paste: All components have a right−click menu that includes the options Cut, Copy
and Paste. Use these options to move components between projects, the Toolbox and container
components (such as folders).

• 

Some components have special component−specific mechanisms for being added to projects. For
example, snippets can be created and added to the Toolbox in one step by selecting a block of text in the
Editor Pane and dragging it into the Toolbox. URL shortcuts are created by dragging and dropping a
URL from a browser address bar or from the Editor Pane into the Toolbox. Refer to the specific
component sections for more information about these options.

To remove a component from the Toolbox, right−click the desired item and select Delete. Alternatively,
click the desired component and press 'Delete', or right−click the component and select Delete.

Komodo−specific components (run commands, macros, etc) are permanently deleted. Filesystem−based
components (files, dialog boxes) are not; only the reference to the component within the project is
removed.

Using the Toolbox 22/437



Exporting and Importing Toolbox Contents

The Toolbox has commands for exporting and importing the contents of the Toolbox as a package.
Packages, which are stored with a ".kpz" extension, are compressed archive files, and can be opened by
any archiving utility that supportslibz (for example WinZip). The Export Package option differs from
the Export as Project File option in that copies of filesystem−based components (such as files and dialog
projects) are included in the archive. Conversely, Export as Project File creates a project with a
reference to the component's original location and does not create copies of the components.

Both Komodo−specific components (such as run commands and snippets) and filesystem−based
components (such as files and dialog projects) can be included. The exported file can subsequently be
loaded as a project or imported into the Toolbox. This provides a mechanism for sharing a Toolbox
among multiple Komodo users; another mechanism is described in the "Shared Toolbox" section below.

To export the contents of the Toolbox to a project file:

From the Toolbox menu, select Export.1. 
In the Export Package dialog box, choose the destination directory and enter a filename.2. 
Click Save.3. 

To import a previously exported Toolbox:

From the Toolbox menu, select Import.1. 
In the Import Package dialog box, select the project file containing the item(s) that you want to
import.

2. 

Click Open.3. 

Sharing Toolboxes

A Shared Toolbox is a single Toolbox shared by multiple Komodo users. When a Shared Toolbox is
enabled, a second tab called Shared Toolbox is displayed beside the Toolbox tab in the Right Pane. This
tab displays the contents of thetoolbox.kpf file, located in the Common Data Directory specified in
Komodo's Shared Toolbox preference.

The functionality of the Shared Toolbox is determined by the user's access rights to thetoolbox.kpf
file. All users with "read" rights to the file are able to use items from the Toolbox. To prevent users from
altering the shared toolbox, ensure that they only have "read" (and not "write") access to the file.

The Shared Toolbox is populated by the same methods described in Adding Components to the Toolbox.

Using the Toolbox 23/437



Working with Files
Komodo provides a variety of methods for accessing and editing files. While files can be opened and
edited individually, they can also be stored in projects or the Toolbox as components.

If Komodo is configured to integrate with a source code control system (SCC), status icons beside the
filenames indicate the file's current SCC status, and SCC options are available from the File menu and
the right−click context menus. This integration is described in detail in the Source Code Control section
of the Komodo documentation.

Files are manipulated in various ways: via the File menu, via context menus in the editor, via context
menus on the file tab (above the editor), and as components within projects and the Toolbox.

This document describes file functionality, such as opening, printing, and saving files. See the Editing
page for information about editing files.

Creating Files

To create a new file, click the "New File" button on the standard toolbar. (To display the standard
toolbar, click View|Toolbars|Standard.) A new file with the default file extension for the file type is
created and opened in the Komodo editor. Use the New Files page in Komodo's Preferences to specify
the default file extension for new files.

Creating Files from Templates

New files can be created based on pre−defined templates that contain default content for specific file
types. See the Templates documentation for information about configuring custom templates.

To create a new file from a template, select File|New|File. The New File dialog box contains numerous
pre−defined templates organized into categories. Select the desired category, then select the desired
template within that category.

Click Open to create a file with the contents of the template file. The file is loaded in the editor.

The File|New|File menu displays a list of the most recently accessed templates. To alter the number of
template files displayed, refer to the New Files page in Komodo's Preferences.

To add a template to the Toolbox for quick access, select the desired template and click Add to Toolbox.

Working with Files 24/437



Storing Files within a Project or the Toolbox

Files can be stored in a project, in the Toolbox, or within folders in a project or the Toolbox. Storing a
file within a project or the Toolbox creates a reference to the actual file located on the disk; it does not
affect the file itself. Therefore, the same file can be stored in multiple projects and folders, both in
projects and within the Toolbox; changes to the original source file apply regardless of the source of the
file reference; deleting a file from a project or the Toolbox does not delete the file from the filesystem.

While most file options (such as source code control commands, viewing unsaved changes, and
refreshing the file status) are accessible regardless or whether or not the file is contained in a project or
the Toolbox, some commands are specific to the project/Toolbox environment. These commands are
described below.

Creating an Open Shortcut to the Current File Location

Open... shortcuts, stored within a project or the Toolbox, are references to filesystem directories. When
an open shortcut is invoked, the standard Open File dialog box is displayed with the contents of the
directory.

Open shortcuts can be created using a specific file as the context. Right−click a file in a project or the
Toolbox and select Make "Open..." Shortcut. This creates an open shortcut to the directory where the
file is stored.

Exporting Files as Projects

The Export as Project File option is used to create a new project file containing the file from which the
option was invoked. To access this option, the file must be stored in a project or the Toolbox.
Right−click the desired file name and select Export as Project File. You are prompted to provide the
name of the new project file and the directory where it will be stored.

To open the new project file, select File|Open|Project.

Exporting Files to a Package

Files can be archived and distributed among multiple Komodo users via "packages". Packages are
compressed archive files that contain the file from which the Export Package option was invoked.
Packages are stored in files with a ".kpz" extension, and can be opened by any archiving utility that
supportslibz (for example WinZip). The Export Package option differs from the Export as Project
File option in that copies of filesystem−based components (such as files and dialog projects) are included

Working with Files 25/437



in the archive. Conversely, Export as Project File creates a project with a reference to the component's
original location and does not create copies of the components. When Export Package is invoked, you
are prompted for a name and file location for the package.

Exported packages can only be imported into "container" objects in Komodo, such as projects, the
Toolbox, and folders within projects and the Toolbox. See Toolbox − Exporting and Importing Toolbox
Contents, Projects − Importing and Exporting Projects via Packages, or Folders − Import Contents from
Package for more information.

Opening Files

There are numerous methods for opening files in Komodo. These include:

Command−Line Argument: When Komodo is invoked from the command line, files can be
specified as open arguments. See Starting on Windows or Starting on Unix for more information.

• 

File|Open: Use the File|Open menu option.• 
Project Manager or Toolbox: Double−click, drag and drop, or use the file's right−click context
menu to open a file contained in a project or the Toolbox.

• 

Open/Find Toolbar: Use the Open/Find Toolbar. To display the Open/Find Toolbar, select
View|Toolbars|Open/Find.

• 

Most Recently Used List: The most recently opened files are displayed on Komodo's Start Page.
This list is also accessible from the File|Recent Files menu. The number of files in the most
recently used list is determined by the Appearance preference.

• 

Drag and Drop: Drag and drop one or more files from another drag−and−drop away application
(such as Windows Explorer) onto the Komodo editor.

• 

Opening Files with the Open/Find Toolbar

The Open/Find Toolbar provides quick access for opening files and finding strings. The toolbar is
displayed in Komodo by default. To hide or show the toolbar, select View|Toolbars|Open/Find.

Use the Open field on the Open/Find Toolbar to open one or more files in the filesystem. The Open
field generates a drop−down list of files and directories as you navigate the hierarchy. To open a file,
enter the file path and name, and then press 'Enter'.

For example, to open a file named "debug.txt" in the directory C:\temp\log on a machine running
Windows, enter C:\tmp\log\debug.txt in the Open field and then press 'Enter'. As you enter each
backslash, a drop−down list displays the files and directories beneath the current directory.

Enter "./" or ".\" in the Open field to display a list of files and directories in the "current" directory. The
current directory is determined as follows:

Working with Files 26/437



Current File: If a file is open in the editor, the directory where the file is stored is the current
directory. If multiple files are open, the file that is currently displayed is the current file.

1. 

HOME Variable: If no files are open, Komodo checks if the system has a definedHOME
environment variable. If so, the directory specified in that variable's value is the current
directory.

2. 

Filesystem Root: If neither of the above conditions is met, the system's root directory is used
("C:\" is the default on Windows, and "/" is the default on Unix).

3. 

To narrow the results in the list box, enter one or more characters in the name of the file or directory you
wish to open or view. (The search is case−sensitive.) Alternatively, use the arrow keys to navigate the
drop−down list. The contents of the Open field are updated as you move up and down the list with the
arrow keys.

Note that you can use standard directory navigation syntax to change directories. For example, if the
current directory is /home/fred/tmp/foo, change to the /home/fred/tmp/bar directory by entering ../bar.

To open a file, press 'Enter' when the file name is displayed in the Open field. To continue navigating the
directory structure, append a frontslash or backslash to the directory name displayed in the Open field;
the drop−down list is updated with the list of files and directories that exist under the current location.

To open multiple files, specify a wildcard ("*" for a file name segment, "?" for a specific character). For
example, to open all the files with the extension ".tcl" in the directory /home/fred/tmp, enter
/home/fred/tmp/*.tcl.

At any time, press the 'Escape' key to return focus to the Komodo editor.

Opening Remote Files

Komodo can open files located on remote machines, providing that the remote machine is configured for
FTP access. To quickly access frequently used FTP servers, create an entry in the Server Preferences
(Edit|Preferences|Servers).

To open a file located on a remote FTP server, select File|Open|Remote File.

Connecting to an FTP Server

Pre−Configured Server Connection: If FTP servers have been configured in Komodo's
Preferences, select the name of the configuration from the Server drop−down list. Access the
Server Configuration dialog box by clicking the Accounts button to the right of the Server field.

• 

Manual Server Connection: Enter the FTP address (in the format "ftp.server.com") in the Server
field. Press 'Enter'. You are prompted to enter a name and password for the FTP server. If the
server is configured for anonymous access, select Anonymous login. To store the login name

• 

Working with Files 27/437



and password for the server, click Remember these values.

Navigating the Remote File System

After establishing a connection to the remote FTP server, a list of files and directories is displayed. These
files and directories exist under the directory specified in the Look in field. Double−click a directory
(indicated by a file folder icon) to navigate the directory structure. Use the navigation buttons in the top
right corner of the dialog box to navigate the remote filesystem.

To open a single file, double−click the filename. To open multiple files, hold down the 'Ctrl' key while
clicking multiple files, then click Open.

The buttons in the top right corner of the dialog box perform various file and directory manipulation
functions. Hover your mouse pointer over the buttons for a description of their functions. To delete or
rename a file on the remote server, right−click the filename and, with the left mouse button, select the
desired command on the context menu.

Storing Remote Files in Projects or the Toolbox

When remote files are added to a project or the Toolbox, or to container components within a project or
the Toolbox, they are accessed and organized in the same manner as local files (double−clicking a file
opens it in the editor; right−clicking a file accesses file option, etc). Remote files can only be added to
projects or the Toolbox by connecting to the remote server.

Login authentication is processed when the remote file is opened, or when it is added to the Toolbox or a
project. For the duration of the Komodo session, the user name and password are remembered; closing
and opening the file uses the same authentication information as the first time the file was opened. If
authentication fails, you are prompted to enter a user name and password.

After closing and re−opening Komodo, the authentication information stored in the Servers preference is
checked again. Thus, changes to the user name or password stored in the server configuration do not take
effect until Komodo is closed and re−opened. If no authentication information is stored in the server
configuration, you are prompted to supply it when you open the file.

See Adding Components to Projects or Adding Components to the Toolbox for instructions on adding
remote files to the Toolbox or to projects.

To open a remote file, double−click the file name, use the assigned key binding, or right−click the file
and select Open File.

Working with Files 28/437



Switching Between Files

To switch between open files in the editor:

Key Binding: Use the associated key binding.• 
Editor Tabs: Click the tab with the desired filename.• 
Window Menu: On the Window menu, select Next File or Previous File to move from left to
right (or right to left) across the file tabs. Alternatively, select the desired file from the list of files
currently open in the editor.

• 

Project or Toolbox: Double−click the filename.• 

If more files are opened than can be displayed by file tabs, click the right and left arrow buttons located
in the top right corner of the editor to view the tabs of all open files.

To re−order the position of the file tabs, drag and drop the tabs into the desired positions.

For more information about working with the editor tabs, see Editor Tab Display in the editor
documentation.

Comparing Files

Komodo includes a "diff" mechanism used to compare files. To compare two files using Komodo's "diff"
window:

Select Tools|Compare Files.1. 
By default, the path and file name of the file currently displayed in the editor is the first file for
comparison. As desired, alter this selection by entering an alternate path and file, or browse for
the desired file using Browse button. Use the same mechanism to specify the second file.

2. 

Click Compare Files. The contents of both files are displayed in the "diff" window.3. 

If the file is stored in a project or the Toolbox, this function can also be invoked by right−clicking the file
and selecting Compare File With.

The unique characteristics of each file are displayed in different colors (red and blue by default);
common characteristics are displayed in a third color (black by default). To configure custom colors for
the "diff" window, alter the Language−Specific Coloring setting for the Other|Diff language in the
Fonts and Colors preference.

The following key bindings are available in the "diff" window:

F8: Jump to the next change.• 
F7: Jump to the previous change.• 
F9: Jump to corresponding line. Opens and/or shifts focus to the original file in the Editor Pane.
If viewing a diff in an editor tab, right−click and select Jump to Corresponding Line (or select

• 

Working with Files 29/437



Code|Jump to Corresponding Line) to shift focus to the editor tab containing the source code.
Selecting this option opens the source code tab in the Editor Pane if it is not already open and/or
shifts focus to the original file in the Editor Pane. (If viewing a diff in an editor tab, right−click
and select Jump to Corresponding Line.)
Esc: close the window• 

Refreshing File Status

The Refresh Status option checks the read/write disk status for the component. If the file is of a language
for which "code intelligence" is supported and enabled (as configured in the Code Intelligence
Preferences), Refresh Status also updates the code intelligence database with the contents of the file.

If the component is stored in a source code control system, Refresh Status also checks the repository
status of the file. Komodo determines whether a file is contained in an SCC repository by the following
methods:

Perforce: analysis of the client configuration• 
CVS: analysis of the CVS control directories• 

To refresh the file status of the current file, right−click the file tab or right−click within the editor and
select Refresh Status. The same option is available on the right−click context menu of files in projects or
within the Toolbox.

Source Code Control

Komodo provides source code control support for files stored in CVS or Perforce repositories. Source
code control support (including SCC configuration, status icons and specific commands) is described in
detail in the Source Code Control section of the documentation. To access source code control
commands:

Editor Context Menu: Right−click a file in the editor and select Source Control.• 
File Tab Context Menu: Right−click a file tab above the editor and select Source Control.• 
Toolbox or Project Context Menu: Right−click a file in the Toolbox or Project Manager and
select Source Control.

• 

Toolbox or Project Menu: If a file is currently selected in the Toolbox or Project Manager, use
the menu to access source code control commands for the selected file.

• 

Working with Files 30/437



File Properties and Settings

In addition to the Komodo's default preferences, some preferences can also be configured on a per−file
basis. These settings override the default preferences. To access the Properties and Settings dialog box
for a file, do one of the following:

Edit Menu: On the Edit menu, click Current File Settings.• 
Editor Context Menu: Right−click in the editor and select Properties and Settings from the
context menu.

• 

File Tab Context Menu: Right−click the tab above the editor that displays the filename, and
select Properties and Settings.

• 

Properties Tab

The Properties tab in the Properties and Settings dialog box displays general information about the file,
such as the directory where it is stored, the size and creation and modification dates. The following file
characteristics can be modified on this tab:

Attributes: Toggle the file's status between writable and read−only.• 
Language: This field displays the current language association (which affects language−specific
options like syntax coloring and AutoComplete) for the current file. To change the language
association, select another language from the drop−down list. To set the language association to
the Komodo default (as configured in the File Association Preference, click Reset.

• 

Encoding: Use this field to set the International Encoding for the current file.• 
Line Endings: Use this field to set the desired line endings for the current file. By default,
Komodo preserves the line endings contained in a file when the file is opened. (Default line
endings for new files are configured in the New Files preference.) If you select Preserve existing
line endings, new lines are assigned the end−of−line character selected in the drop−down list,
but existing lines are not be altered.

• 

Source Control Tab

If Komodo is configured to work in conjunction with a Source Code Control system, the Source Code
Control tab displays the current SCC status and settings.

Editing Tab

The options on this tab are a subset of the General Editor, Smart Editing and Code Intelligence
preferences. Refer to those sections of the Preferences documentation for information about individual

Working with Files 31/437



options.

Indentation Tab

The options on this tab are a subset of the Indentation Preferences. Refer to that section of the
Preferences documentation for information about individual options.

Preview Tab

This option configures the behavior of the Preview in Browser function. When the Preview in Browser
function is invoked, you are prompted to specify the file or URL used to preview the current file. (For
example, when previewing a CSS (cascading style sheet) file, specify an HTML file to use for the
preview.) The Preview in Browser dialog box has an option for remembering the specification. If that
option is enabled, the specification is displayed in the Preview tab on the Properties and Settings dialog
box. Click Change to alter the preview file.

Printing Files

To print the file that is currently displayed in the editor, use one of the following methods. These
methods invoke the standard system dialog box for printer selection and configuration. Advanced print
functions are described below.

File|Print|Print: Invoke the print function from the File menu.• 
Standard Toolbar: On the Standard Toolbar, click the Print button.• 
Editor Context Menu: Right−click the file and select Print.• 

Printing style is configured on the Printing page in Komodo's Preferences. Alternatively, select
File|Print|Print Settings to display the Printing preferences page.

To display a preview of the printed output, select File|Print|Print Preview.

Select File|Print|Print Preview contains features for setting the scale and orientation of a print job. Use
the arrow buttons to move forward or backward in a multi−page print job, or enter a specific page
number in the field provided. Click the Page Setup button to access the complete set of print features in
the Page Setup dialog box.

To print a selection of text rather than the entire file, select the desired text in the editor, then select
File|Print|Print Selected Text.

Working with Files 32/437



Page Setup

Manage the format of print jobs using the options available in the Page Setup dialog box. Select
File|Page Setup to access these options.

Format and Options

Orientation: Select whether the printed output should have a portrait or landscape orientation.• 
Scale: If the Shrink To Fit Page Width check box is not selected, use this field to manually enter
a percentage.

• 

Shrink To Fit Page Width: Select this check box to make the print job fit the paper size selected
for the default printer.

• 

Print Background (colors & images): Select this check box to include background colors and
graphics (e.g., on a web page) in a print job.

• 

Margins and Header/Footer

Margins: Use the fields provided to enter the size of the margins in inches.• 
Headers and Footers: Use the drop−down lists to select the type of information that appears in
the headers and/or footers, and to determine their position on the page. The top row of lists
contains the header options, and the bottom row contains the footer options. Choose from options
such as "Title", "URL" and "Page #". Select the "Custom" option from any of the drop−down
lists to enter custom header information. To print without headers and footers, select the "blank"
option in each of the drop−down lists.

• 

Print to HTML File

To generate an HTML file from the file currently active in the editor:

On the File menu, click Print to HTML File. You are prompted to name the output file.1. 
Enter the file location in the field provided. Click OK. The HTML file opens in the editor.2. 

To print a selection of text to an HTML file (rather than the entire file), select the desired text in the
editor, then select File|Print|Print to HTML File.

Saving Files

Komodo is "intelligent" about saving files. For example, Komodo prompts to save unsaved files on close.
Attempting to save changes to a file that is set to read−only displays a dialog box where you are given
the option to change the status or to "force" the save (which makes the file writable, saves the changes,
then sets the file back to read−only). In addition, Komodo can be configured to automatically save a
backup copy of files open in the editor. To configure Komodo's save functionality, use the Save Options

Working with Files 33/437



preference page.

To save a file with its current name, do one of the following:

Key Binding: Use the associated key binding.• 
File|Save: Use the File|Save menu option to save the file that is currently displayed in the editor.
To save the file to a different name, select File|Save As. To save all open files, select File|Save
All

• 

Standard Toolbar: Click the Save button on the Standard toolbar. To save all open files, click
the Save All button.

• 

File Tab Context Menu: Right−click the file tab and select Save. To save the file to a different
name, select File|Save As.

• 

Saving Files Remotely

To save a copy of the current file to a remote FTP server, select File|Save Remotely As. The Remote File
dialog box is displayed. When editing files located on a remote server (including remote files stored in a
project or the Toolbox), saving the file automatically saves it to the remote location.

Show Unsaved Changes

Before saving a file, view the changes in the file since it was last saved by using the Show Unsaved
Changes option. To invoke this option, right−click within the editor (or on the file tab above the editor)
and select Show Unsaved Changes. An external window displays the differences between the current
version of the file and the disk version (e.g., the version that was last saved).

The unique characteristics of each file are displayed in different colors (red and blue by default);
common characteristics are displayed in a third color (black by default). To configure custom colors for
the "diff" window, alter the Language−Specific Coloring setting for the Other|Diff language in the
Fonts and Colors preference.

Reverting Files

To abandon changes made to a file since it was last saved, but leave the file open in the editor, select
File|Revert.

Working with Files 34/437



Closing Files

To close one or more files, use one of the following methods:

File Menu: Select File|Close or Window|Close. To close all open files, select Windows|Close
All.

• 

Key Binding: Use the associated key binding.• 
File Tab Context Menu: Right−click the file tab and select Close.• 
Editor: Click the "x" in the top right corner of the editor to close the current file.• 

Working with Files 35/437



Searching

Komodo provides a variety of methods for searching and replacing text, both
within files open in the editor and within files on the filesystem. While
Komodo has standard search and replace functionality, it also features unique
search mechanisms like searching for the work under the cursor, incremental
searching and function search.

Feature Showcases

fast string
finder

• 

incremental
search

• 

Open/Find
Toolbar

• 

Searching for Strings

Searching Within Open Files: Find Dialog

The Find dialog box is used to search for words or phrases in the current document. To open the Find
dialog box, from the Edit menu, select Find, or use the associated key binding.

Enter the text you wish to find in the Find what field.

The following search options can be configured:

Match Case: To find matches of the search string regardless of case, select No. To find matches
only when the search string matches the case of the occurrence, select Yes. To find exact case
matches only when the search string contains mixed case, select Yes, if search string contains
capital letters. For example, if you enter "mystring" in the Find what field and select Yes, if
search string contains capital letters, both "mystring" and "myString" will match. However, if
you enter "myString" in the Find what field, only "myString" will match.

• 

Use: Choose Plain Text to exactly match the search string. Regular Expressions will interpret
the search string as a Python regular expression, and perform the search accordingly; Wildcards
will interpret asterisk and question mark characters as wildcards. The option specified (Plain
Text, Regular Expressions (Python), Wildcards) becomes the default search type used for the
Open/Find Toolbar.

• 

Match whole word: If this box is checked, matches in the document will only be found if
whitespace occurs on either side of the search string. For example, if the search string is "edit"
and "Match whole word" is selected, only occurrences of the word "edit" will be found as
matches. However, if "Match whole word" is not selected, "editing", "editor", "editorial" and
"edited" will also be found as matches.

• 

Search up: This performs the search from the cursor position to the top of the file, rather than
from the cursor position to the bottom of the file. (The default functionality is to search down
from the cursor position.)

• 

Display results in Find Results 2: Komodo supports two Find Results tabs in the Bottom Pane.
Check this box to display the search results in the second, rather than the first, Find Results tab.
If this box is not checked, the first Find Results tab is used to display the results of the search.

• 

Searching 36/437



The Open/Find toolbar uses the settings from the Find in Files and Find dialog boxes as default search
parameters. For example, if you configure the Find dialog box to search using wildcards, the Open/Find
toolbar will also perform wildcard searches.

Specify where Komodo should search for the text. In the "Search in" section, select one of the following:

Current document: This searches the document that is currently in focus in the editor for
occurrences of the search string.

• 

Selection only: will only search the highlighted area of the document that is in focus in the
editor. (If you search a selected section, the highlighting of the selected section will be
temporarily turned off in order to display highlighted results of the Find function.)

• 

All open documents: Search for the string in all documents currently open in the editor.• 

Invoke the search by clicking the desired search command button:

Find Next: Finds consecutive occurrences of the search string in your file or selection. As
matches are found, the text will be highlighted. The Find dialog box remains in focus. To keep
the focus in your file, close the Find dialog box, then use the associated key binding (by default,
press 'F3' to Find Next, or 'Shift'+'F3' to Find Previous).

• 

Find All: Locates all occurrences of the search string in your file or selection. The matches will
be displayed in the Find Results tab in the Bottom Pane.

• 

Mark All: Inserts a bookmark on each line that contains the search string. To move the editing
cursor to a bookmarked line, press F2.

• 

To display the results of a previous search, click the relevant Find Results tab in the Bottom Pane. If the
Bottom Pane is not displayed, select View|Tabs|Find Results.

Replacing Within Open Files: Replace Dialog

The Replace dialog box is used to search for and replace words or phrases in the current document. To
open the Replace dialog box, from the Edit menu, select Replace, or use the associated key binding.

Enter what to find and replace with:

Find what: Enter the search string you want to find.• 
Replace with: Enter the replacement characters.• 

The following replace options can be configured:

Match Case: To find matches of the search string regardless of case, select Never. To find
matches only when the search string matches the case of the occurrence, select Always. To find
exact case matches only when the search string contains upper−case letters, select "If Search
String Contains Capital Letters". For example, if you enter "function" in the Find what field and
select "If Search String Contains Capital Letters", both "function" and "Function" will match.

• 

Searching 37/437



However, if you enter "Function" in the Find what field, only "Function" will match.
Use:Plain Text will exactly match the search string; Regular Expressions will interpret the
search string as a Python regular expression, and perform the search accordingly; Wildcards will
interpret asterisk and question mark characters as wildcards.

• 

Match whole word: If this box is checked, matches in the document will only be found if
whitespace occurs on either side of the search string. For example, if the search string is "edit"
and "Match whole word" is selected, only occurrences of the word "edit" will be found as
matches. However, if "Match whole word" is not selected, "editing", "editor", "editorial" and
"edited" will also be found as matches.

• 

Search up: Performs the search from the cursor position to the top of the file, rather than from
the cursor position to the bottom of the file.

• 

Show "Replace All" Results: Displays the number of replacements in the status bar at the
bottom left of the Komodo Workspace. Details of each change, complete with the line number,
will appear on the Find Results tab in the Bottom Pane.

• 

Display in Find Results 2: Komodo supports two Find Results tabs in the Bottom Pane. Check
this box to display the search results in the second, rather than the first, Find Results tab. If this
box is not checked, the first Find Results tab is used to display the results of the search.

• 

Specify where Komodo should replace the specified text. In the "Replace in" section, select one of the
following:

Current document: Searches the document that is currently in focus in the editor for occurrences
of the search string.

• 

Selection only: Only searches the highlighted area of the document that is in focus in the editor.
(If you search a selected section, the highlighting of the selected section will be temporarily
turned off in order to display highlighted results of the Find function.)

• 

All open documents: Searches for the string in all documents currently open in the editor.• 

Invoke the search by clicking the desired search command button:

Find Next: Finds consecutive occurrences of the search string in your file or selection. As
matches are found, the text is highlighted. Click Replace to replace the highlighted text with the
replacement string.

• 

Replace: Highlights the next occurrence of the search string; if you click Replace again, the
highlighted text will be replaced with the replacement string and the next occurrence of the
search string will be highlighted.

• 

Replace All: Replaces all occurrences of the search string in the document or selection without
prompting for confirmation. All replacements will be displayed on the Find Results tab of the
Bottom Pane.

• 

Searching for the Word Under the Cursor

When the editing cursor is within (or adjacent to) a word, you can quickly search for other occurrences of
the same word within the current document. If you are using the default key binding scheme, press

Searching 38/437



'Ctrl'+'F3' to select the word; continue pressing 'Ctrl'+'F3' to step through each occurrence in the
document.

Incremental Search

Incremental search is used to look through the current file in the Editor Pane for a group of incrementing
characters. That is, as you continue to type in search characters, Komodo will find the next occurrence of
the search string. After all the search characters have been entered, you can move through each
occurrence of the search string within the current file.

To start an incremental search select Edit|Incremental Search, or use the associated key binding. (If
you are using the default key binding scheme, the key binding is 'Ctrl'+'I'.) The status bar (in the bottom
left corner of the Komodo workspace) will display the text "Incremental Search:". Begin typing the
characters you want to find; as you type characters, the editing cursor will move to the first match
beneath the current cursor position within the current file, and the search string will be displayed in the
status bar.

To change the search string based on the characters surrounding the editing cursor, use the associated
key binding. If the default key binding scheme is in effect, the key combination is 'Shift'+'Right Arrow'
(to add one or more characters to the right of the editing cursor) or 'Shift'+'Left Arrow' (to remove one or
more characters to the left of the editing cursor).

For example, if you entered "fo" as the search string, and the next occurrence of these characters was in
the word "foo", you could use the 'Shift'+'Right Arrow' key combination to extend the search string to
"foo". Conversely, you could use the 'Shift'+'Left Arrow' key combination to reduce the search string to
"f".

To search through the file for the search string press 'Ctrl'+'I' to find subsequent occurrences of the
search string within the current file. Continue pressing 'Ctrl'+'I' to cycle through all occurrences. When
the search reaches the bottom of the file, it will continue from the top of the file. 'Shift'+'Ctrl'+'I' will
search backwards from the current cursor positon.

To cancel the incremental search press any key except the key bindings assigned to the incremental
search functions.

Searching All Files: Find in Files Dialog

The Find in Files dialog box complements the Find dialog box by providing the ability to search for text
in files that are not currently opened in Komodo. Select Edit|Find in Files (or use the associated key
binding) to open the new dialog box.

The Find in Files dialog box consists of the following options:

Searching 39/437



Find what: Enter the search string.• 
Match Case: To find matches of the search string regardless of case, select No. To find matches
only when the search string matches the case of the occurrence, select Yes. To find exact case
matches only when the search string contains mixed case, select Yes, if search string contains
capital letters. For example, if you enter "mystring" in the Find what field and select Yes, if
search string contains capital letters, both "mystring" and "myString" will match. However, if
you enter "myString" in the Find what field, only "myString" will match.

• 

Match whole word: If this box is checked, matches in the document will only be found if
whitespace occurs on either side of the search string. For example, if the search string is "edit"
and "Match whole word" is selected, only occurrences of the word "edit" will be found as
matches. However, if "Match whole word" is not selected, "editing", "editor", "editorial" and
"edited" will also be found as matches.

• 

Use: ChoosePlain Text to exactly match the search string. Regular Expressions will
interpret the search string as a Python regular expression and perform the search accordingly;
Wildcards interpret asterisk and question mark characters as wildcards.

• 

Search in: By default, the Search in field is populated with a period, which indicates that the
"current" directory will be searched. (If no file is open, the current directory is the value
specified in theHOME environment variable; if theHOME variable is not defined, the current
directory is "C:\" on Windows and "/" on Unix platforms. If one or more files are open, the
location of the file that is displayed in the Editor Pane is the current directory.) To search
directories other than the current, either specify an absolute path, or specify a relative path from
the current directory. For example, if the current directory is /home/fred/tmp/foo, you could
search the /home/fred/tmp/bar directory by entering ../bar. Manually enter one or more
directories; multiple directories are separated by semicolons. Alternatively, click the browse
button to the right of the field to display a directory browser dialog box. (Directories already
specified in the Search in field will be displayed in this dialog box.) Use the directory browser to
navigate the filesystem, specify one or more search directories, and/or alter the order in which
the directories are searched.

• 

Search in subfolders: If this box is checked, subdirectories beneath the directories specified in
the Search in field are also searched.

• 

Include: To specify one or more file types that should be searched, enter the file extensions
preceded by a wildcard. For example, to search files with ".pl" and ".tcl" extensions, enter
*.pl;*.tcl. (Note that multiple file extensions are separated by semicolons.) If this field is
blank, all file types are searched.

• 

Exclude: To specify one or more file types that should be excluded from the search, enter the file
extensions preceded by a wildcard. For example, to exclude files with ".exe" and ".doc"
extensions, enter*.exe;*.doc. (Note that multiple file extensions are separated by
semicolons.) If this field is blank, all file types are searched.

• 

Display results in Find Results 2: Komodo supports two Find Results tabs in the Bottom Pane.
Select this check box to display the search results in the second, rather than the first, Find
Results tab. If this box is not checked, the first Find Results tab is used to display the results of
the search.

• 

After clicking Find All, the Find Results 1 or Find Results 2 tab (depending on the setting of the
Display results in Find Results 2 check box) are displayed in Bottom Pane. Depending on the number of
files that are being searched, it may take some time to generate results. (The search status is displayed on
the top line of the Find Results tab. The results include the file in which the search string is found, the

Searching 40/437



line number in the file where the search string occurs, and the context surrounding the search string.
Double−click a search result (or click the arrow button at the top right of the pane) to open the file in the
editor and place the editing cursor on the selected occurrence.

Fast Search: Open/Find Toolbar

The Open/Find toolbar provides quick access for opening files and finding strings. Find strings in files
currently displayed in the editor or in files not currently open in Komodo but located on the filesystem.
The toolbar is displayed by default; to close or open the toolbar, select View|Toolbars|Open/Find.

The Open/Find toolbar also provides fast access to find functionality. The Find and in fields are used to
perform searches on files in Komodo or elsewhere in the filesystem. Both fields have a list of the most
recently entered strings and file specifications. Use the in field browse button, located to the right of the
in field, to populate this field with the directory, folders, or files you want to search.

Enter the string that you wish to search in the Find field. The Find toolbar uses the settings from the
Find in Files and Find dialog boxes as default search parameters. For example, if you configure the Find
dialog box to search using wildcards, the Find toolbar will also perform wildcard searches.

Specify the files that should be searched in the in field. The in field uses the same logic as the Open field
to determine the current directory. (If no file is open, the current directory is the value specified in the
HOME environment variable; if theHOME variable is not defined, the current directory is "C:\" on
Windows and "/" on Linux and Solaris. If one or more files are open, the location of the file that is
displayed in the Editor Pane is the current directory.)

To search directories other than the current, either specify an absolute path, or specify a relative path
from the current directory. For example, if the current directory is /home/fred/tmp/foo, you could search
the /home/fred/tmp/bar directory by entering ../bar. Alternatively, use the in field browse button to locate
and populate this field with the directory, folders, or files you want to search.

The in field accepts wildcards; use "*" for a file name segment and "?" for a specific character. Separate
multiple directories with semicolons. If nothing is specified in the in field, the search will be performed
against the file that is currently displayed in the Editor Pane (if applicable), and the next occurrence of
the search string is highlighted.

For example, to search for occurrences of the string "error" in all files located in the directory
/tmp/output, enter error in the Find field and /tmp/output/* in the in field.

If files are specified in the in field, matches will be displayed in the Find Results tab.

At any time, press the Escape key to return focus to the Komodo editor. The Find field can be accessed
via the associated key binding.

For example, to search for occurrences of the string "debug" in all files located in the directory /tmp/log

Searching 41/437



on a machine running Unix, enter debug in the Find field. Enter /tmp/log/* in the in field, or use the
"browse" button to locate this directory on your filesystem. For more information on searching using the
Open/Find Toolbar, see Finding Strings.

Find Results Tabs

The Find Results 1 tab (located in the Bottom Pane) displays all matches that result when the Find All
function in the Find dialog box is used. The Find Results 1 tab displays the line number on which the
match occurred and the line that contains the match. Double−click a line in the Find Results tab to
display the line in the Editor Pane.

The Find All function in the Find and Replace dialog box, and the Find in Files dialog box (Edit|Find in
Files) both make use of the Find Results tab, which displays the result of the search on the Command
Output tab. Komodo includes a second output tab that can be specified by checking the Display results in
Find Results 2 check box. By using both tabs, search results are not overwritten every time a new search
is invoked.

Finding Functions: Function Search

The Function Search looks through the current document for the following constructs:

Perl programs:sub and package statements.• 
Python programs:class and def statements.• 
PHP programs:class and function statements.• 
Tcl programs:proc statements.• 

Moving Between Functions

To search forward from the current cursor position, select Code|Find Next Function, or use the
associated key binding. To search backwards from the current cursor position, select Code|Find Previous
Function, or use the associated key binding.

Displaying a List of Functions

To find all instances of functions within the current document, select Code|Find All Functions, or use
the associated key binding. The list of functions in the current document will be displayed on the Find
Results tab located in the Bottom Pane of the Komodo Workspace. Double−click a specific construct on

Searching 42/437



the Find Results tab to highlight the relevant line in the Editor Pane.

Searching 43/437



Editing
Komodo's editor provides support for writing programs in multiple languages,
especially Perl, Python, Tcl, XSLT and PHP. Features of the Komodo editor
are described below.

Editor functions related to whitespace (tabs, smart tabs, indentation) and smart
editing (background syntax checking, AutoComplete, CallTips) can be
customized to suit your preferences. Preferences can be configured to apply to
all files, or to apply only to the file that is currently active in the editor. For
more information, see Customizing Preferences.

Right−click in the Editor Pane for quick access to common editor functions.
Use the left mouse button to select items from the context menu. In addition to
standard Cut, Copy, Paste, Select All, and Print commands, the following
options are also available:

Add as Snippet in Toolbox: This option is only available if code has
been selected in the Editor Pane. It is used to store the selected code
in the Toolbox.

• 

Disable/Enable Breakpoint: Select to disable or enable a breakpoint
on the line where the cursor is positioned.

• 

Add/Edit Breakpoint: Select to add or remove a breakpoint on the
line where the cursor is positioned.

• 

Add/Edit Spawnpoint: Select to add or remove a spawnpoint on the
line where the cursor is positioned.

• 

Jump to Corresponding Line: When comparing the changes made to
a ".diff" file, select this option to shift focus from the current line in
the editor tab containing the diff to the corresponding line in the tab
containing the source code. This option is only available if Komodo is
configured to display diffs in an open editor tab. See Configuring
Source Code Control for more information.

• 

Toggle Bookmark: Select to insert or remove a bookmark on the line
where the cursor is positioned.

• 

Show Unsaved Changes: Select to view, in a separate window,
changes made to a file since the last time it was saved. In the new
window, press F8 to jump to the next change, F7 to jump to the
previous change, F9 jump to a highlighted change in the original file,
and Esc to close the window.

• 

Refresh Status: Select to refresh a file's status. See Customizing File
Settings for more information.

• 

Source Control: Select to Run Source Code Control commands on
the current file.

• 

Properties and Settings: Select to adjust the Current File Settings.• 

Feature Showcases

previewing css
in a browser

• 

storing a code
fragment for
reuse

• 

Editing 44/437



Language Support

Syntax Coloring and Indentation

The Komodo editor is language−sensitive. When you open a file in a supported language, Komodo will
color the syntax, format indentation, and provide indentation guides.

More Information:

Customizing Fonts and Colors• 
File Associations• 
Viewing the Current File as Another Language• 
Customizing Indentation• 

Background Syntax Checking

As you write code in the editor, Komodo periodically checks for syntax errors. Syntax errors are
underlined with a red wavy line; syntax warnings are underlined with a green wavy line. Note that
Komodo uses the language interpreter's own error−checking functions. There may be slight differences in
the way that syntax errors are detected and displayed, depending on the version of the interpreter.

At the bottom of the Komodo workspace, the syntax checking icon displays the syntax status of the
current file displayed in the Editor Pane:

A blue check−mark over the syntax checking icon ( ) indicates that the language interpreter does not
detect any warnings or errors in the program.

A red x over the syntax checking icon ( ) indicates that the interpreter detects one or more errors. To
see the number of errors and warnings contained in the program, hover your mouse pointer over the
syntax checking icon. A pop−up tool tip will display the total number of errors and warnings. If the
syntax analysis is not yet complete, the tool tip will read "in progress".

To move the editing cursor to the line containing the error or warning, double−click the syntax checking
icon. If there are multiple errors or warnings, each time you double−click the icon, the editing cursor will
move to the next error.

Editing 45/437



You can view the error message from the interpreter by using one of the following methods:

Hover the mouse pointer over the error. The interpreter error will be displayed in a pop−up tool
tip.

• 

If the editing cursor is on the same line as the error, the interpreter error will be displayed on the
status bar in the bottom left corner of the Komodo workspace.

• 

Komodo supports background syntax checking for the following languages:

HTML• 
JavaScript• 
Perl *• 
PHP **• 

Python• 
Tcl• 
XML• 
XSLT• 

* requires ActivePerl build
623 or higher

** requires PHP version 4.05
or greater

More Information:

Background Syntax Checking• 

AutoComplete

AutoComplete presents a pop−up list of choices when it encounters functions, methods and properties for
which there is a pre−defined set of options. AutoComplete functionality varies according to the language;
for example, Python AutoComplete lists methods and properties, while XML AutoComplete lists
element and attribute names and values. As you type additional characters, the items in the pop−up list
will be reduced to those that match the characters you have entered.

Use the arrow keys to scroll the list; use the Tab key to insert an item from the pop−up list into your
document; use the Esc key to close the pop−up list.

AutoComplete functionality is described below for each supported language.

More Information:

Enabling and Disabling AutoComplete• 

Editing 46/437



PHP AutoComplete

AutoComplete for PHP is available for the following language elements:

Classes and Methods: Classes in the current file, and classes in any included files, are displayed
upon entry of the keyword "new". Methods in the class are displayed when you enter "−>".

• 

Functions: Standard PHP functions, and functions defined within the script (and within any
included files) are displayed after you have typed four characters that match one or more
function names.

• 

Variables: Variables declared in the current file, or in any included files, are displayed when you
enter the symbol "$" followed by a letter. For variables declared within the current file, only
those variables declared above the current line will be included in the pop−up list.

• 

To use an item from the AutoComplete pop−up list, scroll the list to select the item, then press Tab to
insert.

Customizing PHP AutoComplete

PHP AutoComplete and CallTips use the built−in function definitions contained in the file
phpfunctips−<version>.txt (located under <komodo_installdir>/PHP/). Specify the PHP <version> in
Configuring PHP preferences. Manually alter the phpfunctips−<version>.txt file to customize or extend
PHP AutoComplete and CallTips in Komodo. Review the existing phpfunctips−<version>.txt file for
examples before editing.

Python AutoComplete

AutoComplete for Python requires a Code Intelligence database to accurately list all methods and
properties in a pop−up list. The Code Intelligence database contains data scanned from your Python
installation and custom directories (if applicable). The database is built using a combination of two
wizards. See Building the Code Intelligence Database for more information. Note that Perl, PHP, Tcl,
XML, and XSLT do not require the Code Intelligence database to view AutoComplete pop−up lists.

Perl AutoComplete

AutoComplete for Perl lists methods for modules and variables that have been used elsewhere in the
same program.

Tcl AutoComplete

AutoComplete for Tcl lists all valid methods for a command.

Editing 47/437



To use AutoComplete in Tcl files:

Begin typing "string is alpha". After you enter "str", a pop−up window lists methods that begin
with str.

1. 

Move up and down through the list using the arrow keys.2. 
Press Tab to select the desired method name.3. 
If you keep typing, when you get to "is", the pop−up window lists a reduced list of valid
methods.

4. 

Move up and down through the list using the arrow keys.5. 
Press Tab to select the desired method name.6. 

Customizing Tcl AutoComplete

Tcl AutoComplete and CallTips use the built−in function definitions contained in Tcl .tip files (located
under <komodo_installdir>/tcl/*.tip). Edit the .tip files to customize or extend Tcl AutoComplete and
CallTips in Komodo. Review the existing .tip files for examples before editing.

XML AutoComplete

AutoComplete for XML lists all valid elements for the file, attributes for each element, and suggested
attribute values.

To use AutoComplete in XML files:

Enter "<".
A pop−up window lists valid elements in the file.

1. 

Move up and down through the list using the arrow keys.2. 
Press Tab to select the desired element name.3. 
Press Space to insert a space after the element.
A pop−up window lists valid attributes for that element, if attributes exist for that element.

4. 

Move up and down through the list using the arrow keys.5. 
Press Tab to select the desired attribute name.6. 
Enter "="".
A pop−up window lists suggested attribute values, if suggestions for that attribute are available.

7. 

Move up and down through the list using the arrow keys.8. 
Press Tab to select the desired value.9. 
To end the tag, enter "">".10. 

Autocomplete also helps with closing XML tags:

Enter "</".
A pop−up window lists the most recently opened tag. Note that the option includes the closing
angle bracket ">".

• 

Editing 48/437



XSLT AutoComplete

AutoComplete for XSLT lists all valid elements for the xsl namespace, attributes for the element, and
suggested attribute values.

To use AutoComplete in XSLT files:

Enter "<xsl:".
A pop−up window lists valid elements in the xsl namespace.

1. 

Move up and down through the list using the arrow keys.2. 
Press Tab to select the desired element name.3. 
Press Space to insert a space after the element.
A pop−up window lists valid attributes for that element, if attributes exist for that element.

4. 

Move up and down through the list using the arrow keys.5. 
Press Tab to select the desired attribute name.6. 
Enter "="".
A pop−up window lists suggested attribute values, if suggestions for that attribute are available.

7. 

Move up and down through the list using the arrow keys.8. 
Press Tab to select the desired value.9. 

CallTips

CallTips present you with a reference list of the parameters or arguments for a given function or method.
To use CallTips:

Enter a function or method name followed by an open parenthesis "(".1. 
Use the pop−up as a reference for the parameters and arguments suitable for the function or
method.

2. 

Close the parenthesis.3. 

To clear the CallTip, press the Esc key.

CallTips are available for the following languages:

PHP: To customize PHP CallTips, see Customizing PHP AutoComplete.• 

Tcl: To customize Tcl CallTips, see Customizing Tcl AutoComplete.• 
XSLT• 

Editing 49/437



Python: Python CallTip functionality requires a Code Intelligence database to accurately list all
methods and properties. The Code Intelligence database contains data scanned from your Python
installation and custom directories (if applicable). The database is built using a combination of
two wizards. See Building the Code Intelligence Database for more information. Note that PHP,
Tcl, and XSLT do not require the Code Intelligence database.

• 

More Information:

Enabling and Disabling CallTips• 

Viewing the Current File as Another Language

Komodo's syntax coloring, background syntax checking, and indentation are language−specific.
However, Komodo provides the option to view a file as another language. This is useful when you open,
for example, a Perl file that has no extension. You can select the Perl language option, then edit the file
as a regular Perl file. Komodo's File Associations do not allow you to set a language association with a
file that doesn't have an extension.

To view the current file as another language:

On the View menu, select View as Language.1. 
From the list, select the desired language.2. 

If you have opened a file that does not have a file association specified in the Preferences dialog box,
Komodo displays the file as text. You can select to view the file as another language, but Komodo does
not remember again. If you will be working with a new type of file, it is recommended that you specify a
file association.

For example, if you open a DocBook (*.docb) file in Komodo, it does not have XML syntax coloring.
Specify a file association to tell Komodo to open *.docb files as XML files. For more information on
specifying file associations, see Customizing File Associations.

If you choose to view a file in a different language and then save the file, the original language will not
be restored when you re−open the file. If you are unsure of the original language, you can select
View|View As Language|Reset to best guess. Komodo will ignore the user preference, and analyze the
file in an attempt to determine its language.

Commenting Blocks of Code

The commenting function is used to convert a single line or a group of lines into a comment, with the
syntax appropriate for the file's language. Komodo supports commenting for the following languages:

Editing 50/437



More Information:

Commenting and Un−commenting Lines or Blocks of Code• 

Manipulating Code

Automatically Repeating Keystrokes

To have Komodo repeat a key sequence a specified number of times:

Select Code|Repeat Next Keystroke N Times. The status bar at the bottom of the Komodo
workspace prompts you for the number of times the keystroke(s) will be repeated.

1. 

Type a number using only numeric characters.2. 
Enter the keystroke(s). The results of the sequence are displayed in the Editor Pane the specified
number of times.

3. 

Indenting and Un−indenting Lines of Code

To indent a single line or a selected block of code:

Single Line: Position the cursor at the start of the text on the desired line. Press Tab, or select
Code|Increase Line Indent.

• 

Multiple Lines: Select the desired lines by clicking and dragging in the Editor Pane. Press Tab,
or select Code|Increase Line Indent.

• 

To un−indent a single line or a selected block of code:

Single Line: Position the cursor at the start of the text on the desired line. Select Code|Decrease
Line Indent or use the associated key binding.

• 

Multiple Lines: Select the desired lines by clicking and dragging in the Editor Pane. Select
Code|Decrease Line Indent, or use the associated key binding.

• 

Specify the number of spaces per tab in the Indentation Editor Preferences
(Edit|Preferences|Editor|Indentation).

Reflowing Paragraphs

To reformat a section of code so that it is left−aligned and displays within the Edge line column, select
the section of code to be reflowed, and then select Code|Reflow Paragraph. Alternatively, use the

Editing 51/437



associated key binding.

Joining Lines

To cause two lines of code to display on the same line, position the cursor in the first of the two lines,
and select Code|Join Lines. The second line is joined with the first line.

Converting between Uppercase and Lowercase

To convert a selection of text from uppercase to lowercase (or vice−versa), from the Code menu, select
Make Uppercase or Make Lowercase
, or use the associated key binding.

Transposing Characters

To reverse the position of the two characters to the left of the editing cursor, use the associated key
binding.

Literal Characters

To insert literal characters into the editor, select Code|Enter Next Character as Raw Literal, and then
enter the key or key combination representing the literal character. (Alternatively, use the associated key
binding.) For example, to insert a form feed, enter 'Ctrl'+'L'. The following characters are common:

Ctrl+L: Form Feed (shown as "FF")• 
Esc: Escape character (shown as "ESC")• 
Return or Ctrl+M: Carriage Return (shown as "CR")• 
Ctrl+J: Line Feed (shown as "LF")• 
Tab or Ctrl+I: Tab (shown as "−−−−>")• 

Commenting and Un−commenting Lines or Blocks of Code

To comment a single line of code, place the cursor on the desired line, then, from the Code menu, select
Comment Region. Alternatively, use the associated key binding.

Editing 52/437



To un−comment a line of code, place the cursor is on the desired line, then, from the Code menu, select
Uncomment Region. Alternatively, use the associated key binding.

To comment a block of code, select the lines you wish to comment by clicking and dragging the mouse
in the Editor Pane. Then, from the Code menu, select Comment Region. Alternatively, use the associated
key binding.

To un−comment a line of code, place your cursor is on the desired line, then, from the Code menu, select
Uncomment Region, or use the associated key binding.

Cleaning Line Endings

If a file contains line endings for more than one platform, you can replace the unwanted line endings with
the line endings specified in file's Properties and Settings dialog box.

On the View menu, click View EOL Markers to show line endings.1. 
Select the line(s) for which you want to replace the endings.2. 
On the Code menu, click Clean Line Endings. The line endings are replaced with the line
endings specified in the file's settings.

3. 

Tabifying and Untabifying Regions

"Tabifying" a region converts leading spaces to tabs. If you select a line of code that has some leading
spaces and you choose to tabify the region, you convert all the leading spaces into Tab characters. The
Tabify region dialog box sets the ratio of space characters to Tab characters. If you select 8, then each 8
space characters will be represented as 1 Tab character.

To tabify a region:

From the Code menu, select Tabify Region.1. 
In the dialog box, set the number of spaces, from 1 to 16, to apply to a tab.
Click OK or press Enter.

2. 

To untabify a region:

From the Code menu, select Untabify Region.1. 
In the dialog box, set the number of spaces, from 1 to 16, to apply to a tab.2. 
Click OK or press Enter.3. 

To illustrate tabifying, follow this procedure:

Editing 53/437



Open the sample_project.kpf.1. 
Open perl_sample.pl.2. 
Turn on the Line Numbers.3. 
Turn on the Whitespace characters.4. 
Find the following line:$sum += $prices[$i]; There are four leading spaces on this line.
You can tabify this line and convert each space character into one Tab character.

5. 

Tabify this line. Set the number of spaces to 1. This means each space character will be
converted to one Tab character.

6. 

Now this line has four Tab characters, represented as right arrows, precedingprint $sum +=
$prices[$i];. This causes the line to be indented too far.

7. 

Untabify this line. Set the number of spaces to 1. This returns the line to the original state.8. 

Now look at another line with 8 leading spaces.

Open python_sample.py1. 
Find the following line:print "element %s is a string" % element. There are 8
leading spaces on this line.

2. 

Tabify this line. Set the number of spaces to 8. This means the 8 spaces will be converted to one
Tab character. 

3. 

Now this line has one Tab character, represented as a right arrow, precedingprint
"element %s is a string" % element;. This does not change the line's indentation.

4. 

Untabify this line. Set the number of spaces to 8. This returns the line to the original state.5. 

You can set the width of Tab characters in the Preferences dialog box. The default value is 8.

Selecting Columns

Select columns of text in Komodo by pressing the 'Alt' key and then dragging with the mouse. This
feature is particularly useful when you want to easily move code and data that is arranged in columns.
Once the column of text has been selected, use the keyboard or the Edit menu to delete it or move it to
another location.

Completing Words

The Komodo editor maintains an index of words in the current file. Rather than re−entering words that
already exist in the current file, use the Complete Word feature to finish words.

Enter one or more characters, then select Code|Complete Word, or use the associated key binding. Words
are completed based on the most recent occurrence in the current file. For example, if you type "pr",
Komodo searches backward from the insertion point to find the first instance of a word that begins with
"pr". Continue pressing the spacebar while holding down the 'Ctrl' key to cycle through all possible
completions for the word. The Complete Word feature is case sensitive.

Editing 54/437



Selecting Blocks of Code

Quickly select blocks of code using Komodo's Select Block function (Code|Select Block, or use the
associated key binding). This function uses the Code Folding logic.

When the Select Block function is invoked, Komodo analyzes the cursor position relevant to the blocks
of code in the document. If the cursor is within a block, the entire block will be selected. (If the cursor is
within a nested block, only the current sub−block will be selected, not the block that contains the entire
nested structure.) If the cursor is not inside a block, the entire document will be selected.

Editor Display Characteristics

Toggling Whitespace On and Off

Whitespace is any space in a file not taken up by text. Line breaks, spaces, and tabs are considered
whitespace.

To toggle whitespace on and off, select View|View Whitespace, or use the associated key binding.

To set a default for whitespace display, see Customizing Editor Features for more information.

Toggling Indentation Guides On and Off

Indentation guides display vertical lines in the Editor Pane that indicate the number of whitespace
indents. The width of indentation guides is determined by the value in the Indentation Width preference.
See Customizing Indentation for more information.

To toggle indentation guides on and off, select View|View Indentation Guides, or use the associated key
binding.

Toggling Line Numbers On and Off

Line numbers can help orient you when working in a long file.

To toggle line numbers on and off, select View|View Line Numbers, or use the associated key binding.

To set this option globally, see Customizing General Editor Features for more information.

Editing 55/437



Toggling EOL (end of line) Markers On and Off

End−of−line markers indicate where and how a line ends, such as by a hard return or another key. If you
use Enter to end a line, the EOL marker could be CR or CR+LF.

To toggle EOL markers on and off, select View|View EOL markers, or use the associated key binding.

To set this option globally, see Customizing General Editor Features for more information.

Increasing and Decreasing the Code Font Size

To increase the font size in the Editor Pane, select View|Font, and then Increase or Decrease.
Alternatively, use the associated key binding. Repeat until the font size is appropriate. The size
specification applies to all files open in the Editor Pane.

When you save a file, the new font size is saved.

Toggling Fixed and Non−Fixed Width Fonts

In Komodo, you can use fixed width or non−fixed width fonts for editing. You can also toggle between
these settings. The default font is non−fixed width. Note that this setting does not persist. If you toggle to
a different setting, the next time you open the file it will restore the width specified on the Fonts tab of
the Fonts and Colors page in Komodo Preferences.

To toggle between fixed and non−fixed width font:

On the View menu, select Font, then Toggle Fixed/Proportional Fonts. This changes the font to
fixed width.

1. 

Repeat to reverse.2. 

Folding and Unfolding Code

Code folding symbols appear in the left margin of the Editor Pane immediately left of the line of code
that is or can be folded. Minus signs indicate the beginning of a block of code that can be collapsed or
folded. Plus signs indicate the beginning of a block of code that can be expanded or unfolded. This line
of code is also underlined.

Either specific code blocks or all code blocks can be folded.

To collapse or fold a single block of code:

Editing 56/437



Click the minus sign immediately to the left of a block of code
or

• 

On the View menu, select Fold, then Collapse
or

• 

Use the associated key binding.• 

To collapse or fold all foldable blocks of code:

On the View menu, select Fold, then Collapse All

All foldable blocks of code collapse and the minus signs all become plus signs.

• 

To expand or unfold a single block of code:

Click the plus sign immediately to the left of a block of code
or

• 

On the View menu, select Fold, then Expand
or

• 

Use the associated key binding.• 

To expand or unfold all foldable blocks of code:

On the View menu, select Fold, then Expand All

All foldable blocks of code expand and the plus signs all become minus signs.

• 

Navigating Within Files

Moving to a Specific Line

While editing, you can move to a specific line number as follows:

On the View menu, select Goto Line.1. 
In the dialog box, enter the line number, or, to move backward or forward from the current line
enter "+" or "−" in front of the number. For example, enter "+5" to move five lines ahead.

2. 

Click Goto Line or press Enter.3. 

Setting and Moving to Bookmarks and Marks

Bookmarks are points of interest in a file. Komodo displays blue triangles on the left margin beside
bookmarked lines. Marks, which are derived from the Emacs editor, are similar to bookmarks. The key
difference is that marks have no graphical representation in Komodo. Marks make it possible to create an

Editing 57/437



invisible reminder of previously visited locations in a file.

Bookmarks

To set or unset a bookmark: Position the editing cursor on the line of interest. Select
Code|Marks|Toggle Bookmark or use the associated key binding to bookmark the line. If the
line is already bookmarked, the bookmark will be removed.

• 

To move to the next bookmark: Select Code|Marks|Next Bookmark or use the associated key
binding.

• 

To move to the previous bookmark: Select Code|Marks|Previous Bookmark or use the
associated key binding.

• 

To clear all bookmarks: Select Code|Marks|Remove All Bookmarks or use the associated key
binding.

• 

Marks

To set a mark: Position the cursor on the line of interest. Select Code|Marks|Set Transient
Mark. The status bar at the bottom of the Komodo workspace indicates that a transient mark is
set at the current line. If the default Emacs key binding scheme is in effect, execute this
command using 'Ctrl'+'Space'.

• 

To move from a position to a mark: Select Code|Marks|Exchange Position and Mark to move
from the cursor location (or "position") back to the associated mark. Conversely, if the cursor is
located at the mark, selecting this option will move the cursor back to the previous position. If
the default Emacs key binding scheme is in effect, execute this command using 'Ctrl'+'X',
'Ctrl'+'X'.

• 

To move to the previous mark: Select Code|Marks|Move to Previous Mark to move from the
current mark to the previous mark or from the current cursor location to the previous mark. If the
default Emacs key binding scheme is in effect, execute this command using 'Ctrl'+'U',
'Ctrl'+'Space'.

• 

Matching Braces

Use the Matching Brace functions to quickly jump between opening and closing braces and parentheses.
Notice that when the editing cursor is adjacent to a brace or parenthesis, the brace is displayed in bold
red. The associated closing or opening brace is also displayed in bold red.

To jump to the matching brace, select Code|Jump to Matching Brace, or use the associated key binding.
To select the braces and the contents they contain, select Code|Select to Matching Brace.

Editing 58/437



Detecting Changed Files

Komodo can be configured to monitor the status of files that are opened in the editor. If the file is
changed on disk, you will be prompted to reload the latest version under the following circumstances:

when you change between tabs in the editor• 
when you switch back to Komodo from another application• 
when you save a file• 

Use Komodo's Preferences to enable or disable this function.

Preview in Browser

You can configure Komodo to preview a variety of file types in your default browser, or in the Editor
Pane. The Preview in Browser feature is particularly useful when working with HTML or XML files.

The browser preview will be displayed in a separate window, in the Editor Pane, or in a split view of the
Editor Pane, depending on which preference has been set.

The context menu in the Editor Pane is only available when the "source" tab is in focus. If Komodo does
not support previewing of a specific file type, the Preview in Browser option will not be available from
either the toolbar or the View menu.

To preview a file with the Preview in Browser feature:

Open the file in the Komodo Editor Pane. Or, if the file is already open, make sure it is the
selected tab in the Editor Pane.

1. 

Select View|Preview in Browser. A dialog box will appear, prompting you to choose which file
to preview.

2. 

If you want to preview the current file, select Preview with this file, or, if you want to preview
using another file that includes the current file (e.g., use an HTML file to preview a CSS file),
select Preview with another file or URL, then click Browse to navigate to the desired file
location. If you do not want to be prompted each time you preview a specific file, select
Remember this selection for this file. If you later decide that you want to specify a different
preview selection, use the option on the Preview tab of the Current File Settings dialog box.

3. 

Click Preview. The file will be displayed in the Editor Pane or in a separate window, depending
on which preference has been set.

4. 

Editor Tab Display

Use the following commands on the Window menu to manage the way previews and tab groups are

Editing 59/437



displayed in the Editor Pane:

Move to Other Tab Group: Splits the Editor Pane (if not already split) and moves the active file
to the other tab group.

• 

Split View: Splits the Editor Pane (if not already split) and displays the active file in both tab
groups.

• 

Rotate Tab Groups: If two tab groups are displayed, this option switches between a horizontal
and vertical split.

• 

If displayed in the Editor Pane, previews include a toolbar with basic Web browser functionality,
including (from left to right) "Back", "Forward" "Reload", and "Stop" buttons.

Editing 60/437



Working with Folders
Use folders to group items within projects or within the Toolbox. Project
folders are virtual; that is, they do not correspond to directories on the
filesystem. When you Import from File System, the virtual project or Toolbox
folders are created with the same name as the imported directories. However,
modifying the name of the folder within Komodo has no effect on the
directory's name in the file system.

Folders are "containers"; that is, any component that can be added to a project
or the Toolbox can be stored in a folder. See Adding Components to Projects
or Adding Components to the Toolbox for instructions on adding folders to
the Toolbox or to projects.

Double−click a folder to display its contents; double−click again to collapse a
folder and hide its contents. Alternatively, click the plus and minus icons.

Feature Showcase

import a
filesystem

• 

Folder Options

To access options for the selected folder, do one of the following:

Toolbox or Project|component_name|option: When a component is selected in the Project
Manager or Toolbox, use the Project or Toolbox drop−down menus to access the list of options.
The name of the component that is currently selected in a project or the Toolbox is displayed in
the drop−down menu.

• 

Context Menu: Right−click an existing component in a project or the Toolbox and select the
desired option.

• 

The following sections describe each of the options available for folders.

Import from File System

This option imports the files and directories from a local or network filesystem into a folder. Depending
on the configuration of the options below, file and directory references are created in the same
hierarchical structure as the filesystem. (Alternatively, all the file references in a recursive directory
structure can be located at the same level within a folder.)

Use the following options on the Import from File System dialog box to configure the import:

Directory to import from: Specify the directory from which you want to import files. Use the
Browse button to navigate the file system.

• 

Files to include: Specify the filenames to include. Use wildcards ("*" and "?") to specify groups
of files. Separate multiple file specifications with semicolons. If the field is left blank, all files in
the specified directory are imported.

• 

Working with Folders 61/437



Files and directories to exclude: Specify the file and directory names to exclude. Use wildcards
("*" and "?") to specify groups of files. Separate multiple file specifications with semicolons. If
the field is left blank, no files in the specified directory are excluded.

• 

Import Subdirectories Recursively: Check this box to import directories (and files contained in
those directories) located beneath the directory specified in the Directory to import from field.
This box must be checked in order to specify the "Import Directory Structure" option as the Type
of folder structure to create.

• 

Type of folder structure to create:
Import directory structure: If the Import Subdirectories Recursively box is checked and
this option is selected, Komodo creates folders within the project that represent imported
directories. Thus, the directory structure is preserved within the project.

♦ 

Make a folder per language: If this option is selected, imported files are organized into
folders according to the language indicated by file pattern in the filename. File
associations are configured in the Komodo Preferences. Each folder is named after the
associated language, for example, "Perl files", "XML files", etc. Files that don't
correspond to a known file pattern are stored in a folder called "Other files".

♦ 

Make one flat list: If this option is selected, all the imported files are placed directly
under the project or folder from which the Import from File System command was
invoked.

♦ 

• 

After importing from the file system, you are prompted to confirm the addition of the files that match the
specified criteria. You may remove one or more files from the import. Click OK to proceed with the
import.

After using the Import from File System feature, if you attempt to re−import the same file system
location into the same project, only files that are new since the last import are imported.

Export Contents to Package

Folders can be archived and distributed among multiple Komodo users via Packages. Packages are
compressed archive files that contain the folder from which the Export Package option was invoked, as
well as the folder's contents. Packages are stored in files with a ".kpz" extension, and can be opened by
any archiving utility that supportslibz (for example WinZip). The Export Package option differs from
the Export to Project option in that a copy of filesystem−based components (such as files and dialog
projects) is included in the archive. Conversely, Export to Project creates a project with a reference to
the component's original location and does not create a copy of the component.

To export the contents of a folder to a package:

In the Project Manager or Toolbox, right−click the folder containing the item(s) to be exported to
a package and select Export Package.

1. 

In the Package Export Wizard, enter the Package Name and Export Location. Click Next.2. 
Click Finish.3. 

Working with Folders 62/437



Import Contents from Package

Exported packages can only be imported into "container" objects in Komodo, such as projects, the
Toolbox, and folders within projects and the Toolbox.

To import the contents of a package to a folder:

In the Project Manager or Toolbox, right−click the folder and select Import Package.1. 
In the Package Import Wizard, enter the name of the package and the location on disk where files
(as opposed to internal components like snippets and run commands) will be extracted. Click
Next.

2. 

Click Finish.3. 

Refresh Folder Contents Status

The Refresh Status option checks read/write disk status for filesystem−based components (such as files
and dialogs) contained within the folder. If a file is of a language for which "code intelligence" is
supported and enabled (as configured in the Code Intelligence Preferences), Refresh Status will also
update the code intelligence database with the contents of the file.

If the component is stored in a source code control system, Refresh Status also checks the repository
status of the component. Komodo determines whether a file is contained in an SCC repository by the
following methods:

Perforce: analysis of the client configuration• 
CVS: analysis of the CVS control directories• 

Adding Components to Folders

Use this option to add components to the selected folder. All components can be added to folders, in the
same manner they are added to projects. Refer to the individual component documentation, or the topics
Adding Components to Projects or Adding Components to the Toolbox for more information.

Use the cut/copy/paste options to remove folders from a project or the Toolbox, or to move folders
between the project and the Toolbox, between projects, or between folders.

Working with Folders 63/437



Exporting Contents as Project File

When this option is invoked, a new project file is created that contains the folder (and its contents) from
which the option is invoked. You are prompted to provide the name of the new project file and the
directory where it will be stored. To open the new project file, select File|Open|Project.

Renaming Folders

To change the name of a folder, select this option and enter a new name.

Source Control on Folder Contents

Source Control on Contents refreshes the source code control status of all the files contained within the
folder. A subset of Komodo's Source Code Control functions can be performed. See Source Code
Control for a description of specific options.

Deleting Folders

To remove a folder from a project or the Toolbox, select this option. Komodo folders are virtual; deleting
a folder has no effect on the disk structure or contents.

Working with Folders 64/437



Snippets

Snippets are frequently used strings that can be quickly inserted into the
current document. For example, repetitive sections of code or standard
comments can be stored within a snippet. Snippets have advanced properties;
they support the use of Interpolation Shortcuts, can be assigned to Key
Bindings, and allow for the specification of indentation context and cursor
position.

Snippets are stored in the Project Manager or the Toolbox.

Feature Showcases

a snippet that
prompts for
input

• 

a snippet
containing a
code fragment

• 

Creating Snippets

To create a code snippet, select the desired block of text in the Editor Pane. Then drag and drop the
selected section onto the Toolbox tab or into a project on the Projects tab.

Alternatively, select the desired text, then right−click and select Add as Snippet in the Toolbox.

Alternatively, right−click a folder in the Toolbox or on a project or folder name on the Projects tab, and
select New Snippet. If you use this method, you must manually enter the contents of the snippet; text
selected in the Editor Pane is not automatically added to the Snippet dialog box.

Configuring Snippets

To configure snippet properties, right−click the snippet on either the Toolbox tab or the Projects tab, and
select Properties. The following configuration properties are available:

Snippet Name: Enter the text that should display in the Project Manager or Toolbox for this code
snippet. If the snippet was created by dragging a text selection from the Editor Pane, the snippet
is named after the text in the snippet.

• 

Snippet Contents: If the snippet was created by dragging a text selection from the Editor Pane,
the contents of the selected text are displayed in the Snippet Contents field. Otherwise, enter the
contents of the snippet manually. Add or edit snippet content as desired.

• 

Snippet Shortcuts: Interpolate shortcuts into snippets by clicking the arrow button to the right of
the Snippets Contents field, and selecting a shortcut from the drop−down menu. For a complete
list of interpolation shortcut options and syntax, see Interpolation Shortcuts. (Interpolation
shortcuts in snippets are not executed when the snippet is inserted in the Editor Pane via
dragging and dropping.)

• 

Maintain selected text or cursor position after insertion: Within the snippet contents field,
either select a portion of the snippet (by dragging the mouse pointer over the desired selection) or
position the editing cursor within the string. If this check box is selected, when the snippet is
inserted into the Editor Pane, the selected text or the cursor position is displayed in the same
manner.

• 

Snippets 65/437



Maintain indentation context after insertion: If the snippet is inserted into the Editor Pane when
the editing cursor is in an indented position, select this check box to use the indentation point as
an indentation "prefix". The indentation structure of the snippet is preserved at the position of
insertion.

• 

Using Snippets

To insert the contents of a snippet at the current cursor position in the Editor Pane, double−click it, or
right−click the snippet and select Insert Snippet.

Although you can also drag and drop snippets onto the Editor Pane, the cursor position and indentation
check box options explained above in Configuring Snippets will only take effect if the snippet is added
using the double−click or Insert Snippet method.

Snippet Options

To access options for the selected snippet, do one of the following:

Toolbox|snippet_name|option or Project|snippet_name|option: When a snippet is selected in the
Project Manager or Toolbox tab, use the Project or Toolbox drop−down menus to access the list
of options. The name of the snippet currently selected in a project or the Toolbox is displayed on
the drop−down menu.

• 

Context Menu: Right−click a snippet in a project or the Toolbox and select the desired option.• 

The following options are available:

Insert Snippet: Use this option to insert the snippet at the current cursor position in the editor, as
described above in Using Snippets.

• 

Cut/Copy/Paste: These options are used to remove the snippet from a project or the Toolbox, or
to move snippets between the project and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the snippet from which the option is invoked. You are prompted to provide the name of the new
project file and the directory where it will be stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Snippets can be archived and distributed among multiple Komodo users via
Packages. Packages are compressed archive files that contain the snippet from which the Export
Package option was invoked. Packages are stored in files with a ".kpz" extension, and can be
opened by any archiving utility that supportslibz (for example WinZip). The Export Package
option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as
Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name

• 

Snippets 66/437



and file location for the package. Exported packages can only be imported into "container"
objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting
Projects via Packages, or Folders − Import Contents from Package for more information.
Rename: To change the name of a snippet, select this option and enter a new name.• 
Delete: To remove a snippet from a project or the Toolbox, select this option. The snippet is
permanently deleted.

• 

Snippet Properties

Snippet properties are used to alter or rename snippets (as described in Configuring Snippets, above).
The Properties dialog box is also used to assign a custom icon to a snippet or to assign a custom key
binding. To access the Properties dialog box, right−click the snippet and select Properties.

Assigning Custom Icons to Snippets

The default snippet icons can be replaced with custom icons. Komodo includes more than 600 icons;
alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images for best
results).

To assign a custom icon to a snippet:

On the Projects tab or Toolbox tab, right−click the desired snippet and select Properties.
Alternatively, click the icon in the Projects tab or Toolbox tab, then select
Projects|snippet_name|Properties or Toolboxsnippet_name|Properties.

1. 

In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the Properties dialog box for the snippet, click OK. The custom icon is displayed next to the
snippet.

4. 

To revert to the default icon for a selected snippet:

On the Projects tab or Toolbox tab, right−click the desired snippet and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the snippet.2. 

Snippet Key Bindings

To assign a key binding to a snippet, right−click the snippet on either the Toolbox tab or the Projects tab,
and select Properties. Select the Key Bindings tab, and configure the desired binding. See Key Bindings

Snippets 67/437



for Custom Components for more information.

Snippets 68/437



Macros
A macro consists of keystroke sequences that are recorded, saved, and executed either manually, via a
key binding, or with an event trigger. When the macro is invoked, the recorded keystrokes and
instructions execute. Only keystrokes (not mouse movements) are recorded within macros. Note that,
with the exception of the Find dialog box, macros that call external dialog boxes are not supported.
Macros are stored in projects or the Toolbox. Custom key bindings can be assigned to macros.

The Macros toolbar provides quick access for recording, running, and saving macros. To open or close
the toolbar, select View|Toolbars|Macros. Alternatively, select Tools|Macros.

Creating Macros

Macros can be created via recording keystrokes, or by programming macro commands in the Macros
properties dialog. For information about programming macros, refer to the Macro API.

Recording Macros

Recording is a simple method for creating a macro. Recording a macro requires typing a series of
keystrokes in the Editor Pane. To record a macro:

Select Tools|Macros|Start Recording. The Komodo status bar displays "Recording Macro".1. 
In the Editor Pane, enter the keystrokes to store in the macro. While entering keystrokes, pause
recording by selecting Tools|Macros|Pause Recording. Select Start Recording when ready to
resume macro creation.

2. 

To end macro recording, select Tools|Macros|Stop Recording. The status bar displays "Macro
Recorded".

3. 

Alternatively, use the Macros Toolbar to invoke the commands.

Saving Recorded Macros

To save the most recent macro:

Select Tools|Macros|Save to Toolbox, or click Macro: Save to Toolbox on the Macro Toolbar.1. 
Give the new macro a unique name in the Enter name for new macro field. A reference to the
macro is automatically added to the Toolbox.

2. 

Macros 69/437



Programming Macros

Use the "New Macro" Properties dialog box to program macros in either Python or JavaScript.
Additionally, use this dialog box to specify macro key bindings and Komodo triggers that invoke the
macro automatically.

To add a macro:

Select Toolbox|Add|New Macro... or Project|Add|New Macro.... Alternatively, use the Add
buttons within the Project or Toolbox tab, or right−click a project or folder name and select Add.

1. 

On the Macro tab, configure the following options:2. 
New Macro: Enter the name of the macro (displayed in the Toolbox and Project
Manager) in the field.

♦ 

Change Icon: Click to select a custom icon to associate with this macro.♦ 
Reset: Clears the icon choice.♦ 
Language: Specify the language (Python or JavaScript) in which to program the macro.♦ 

Program the macro in the Language editor field.3. 
Click OK.4. 

Refer to the Macro API for information about programming macros.

Running Macros

To run the most recently recorded macro, select Tools|Macros|Execute Last Macro, or use the associated
key binding. If the Macro Toolbar is open (View|Toolbars|Macro), click Macro: Run Last Macro.

To run a macro that has been saved to a file and assigned to a project or to the Toolbox, double−click the
macro, or use the key binding assigned to the macro. Alternatively, right−click the macro in the Project
Manager or the Toolbox and select Execute Macro from the context menu.

Specifying Macro Triggers

Macros can be configured to execute based on certain Komodo events or triggers. When an event occurs
(for example, a file is opened in Komodo), the macro is triggered and then executes. A macro that
triggers "editor" functions or modifies open files should run in the foreground to block user access to the
editor. Macros running in the foreground run and "block" until they return. This prevents the user from
moving the cursor and disrupting the macro currently in progress.

Macro Return Values

Use the Macros Properties dialog box to specify a macro return value. Enteringreturn 1; is

Macros 70/437



syntactically valid as a true value in either Python or JavaScript. Macros that return true and invoke
before a Komodo event can interrupt the process under execution. For example, a macro can prevent a
file from being saved if true is returned. If a macro returns "None" in JavaScript, or "Null" in Python, it
evaluates to false and does not interrupt the Komodo event in progress.

Note: Be sure to enable macro triggers via the Projects and Workspace Preferences in Komodo's
preferences. In the Triggering Macros area, select Enable triggering of macros on Komodo events, and
then click OK.

To add a trigger to a macro:

Right−click the macro in the Toolbox and select Properties.1. 
Select the Triggers tab on the Macro Properties dialog box to access the following options:2. 

Macro should trigger on a Komodo event: Select the check box to access the trigger
events.

♦ 

Select the event you want to trigger the macro:♦ 
At the tail end of the Komodo startup process◊ 
After a file is opened◊ 
Before a file is saved◊ 
After a file is saved◊ 
Before a file is closed◊ 
After a file is closed◊ 
Before Komodo shuts down (as part of File/Exit)◊ 

Rank: Enter a numerical rank for the macro. For example, if three macros all invoke
"After a file is opened", a macro executes first (100), second (101), or third (102). The
default is 100 to provide room for macros to run before the default (1−99). Note that if
two macros trigger on the same event with the same rank, both execute in indeterminate
order.

♦ 

Click Apply.3. 

Running Macros in the Background

If a macro is not associated with a Komodo event, it can run either in the foreground or in the
background. Depending on the use case, some macros should run in the background while others are
more suitable for running in the foreground. Macros that invoke and do not affect the current file are best
run in the background to minimize interference with Komodo responsiveness. Macros that perform
"editor" functions or modify open files should always run in the foreground to "block" and prevent user
interference. This prevents the user from moving the cursor and disrupting the macro currently in
progress. Macros that run in the background are run in threads in Python, or in a timeout in JavaScript.

To run a macro in the background:

Right−click the macro in the Toolbox and select Properties.1. 
Select the Run in Background option.2. 

Macros 71/437



Click Apply.3. 

Storing Macros in Projects or the Toolbox

Macros are added to the Toolbox via the Tools|Macros|Save to Toolbox option. However, you can
manually add macros to the Toolbox, or to a project in the Project Manager.

To add a new macro to a project or the Toolbox:

Right−click the name of the project, or the name of a folder within a project or the Toolbox, and
select Add|New Macro from the context menu. Alternatively, select Project|Add|New Macro or
Toolbox|Add|New Macro from the drop−down menu, or select New Macro from the Add button
in the Project or Toolbox tab.

1. 

Follow the instructions in the Programming Macros section.2. 
Click OK.3. 

Alternatively, existing macros can be dragged and dropped between the Toolbox and the Project
Manager.

Macro Options

To access macro options, right−click the macro name in a project or the Toolbox and select the desired
option.

Execute Macro: Use this option to run the selected macro.• 
Cut/Copy/Paste: These options are used to remove the macro from a project or the Toolbox, or
to move macros between the project and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the macro from which the option is invoked. You are prompted to provide the name of the new
project file and the directory where it will be stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Macros can be archived and distributed among multiple Komodo users via
"packages". Packages are compressed archive files that contain the macro from which the Export
Package option was invoked. Packages are stored in files with a ".kpz" extension, and can be
opened by any archiving utility that supportslibz (for example WinZip). The Export Package
option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as
Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name
and file location for the package. Exported packages can only be imported into "container"
objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting

• 

Macros 72/437



Projects via Packages, Folders − Import Contents from Package for more information.
Rename: To change the name of a macro, select this option and enter a new name.• 
Delete: To remove a macro from a project or the Toolbox, select this option. The macro is
permanently deleted.

• 

Assigning Custom Icons to Macros

The default macro icon can be replaced with custom icons. Komodo includes more than 600 icons;
alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images for best
results).

To assign a custom icon to a macro:

In the project or in the Toolbox, right−click the desired macro and select Properties.
Alternatively, click the macro in the Projects tab or Toolbox tab, then select
Projects|macro_name|Properties or Toolboxmacro_name|Properties.

1. 

In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the properties dialog box for the macro, click OK. The custom icon is displayed next to the
macro.

4. 

To revert to the default icon for a selected macro:

On the Projects tab or Toolbox tab, right−click the desired macro and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the macro.2. 

Assigning Key Bindings to Macros

Custom key bindings can be assigned to macros stored in the Toolbox or in a Project. Use the Key
Binding tab in the macro's Properties to specify the keystrokes that invoke the macro. See Key Bindings
for Custom Components for more information.

Macros 73/437



Macro API

Introduction to the Komodo Macro API

Komodo macros can be written in either JavaScript or Python. As much as possible, the API calls are the
same regardless of the language. Exceptions are noted where appropriate.

In both Python and JavaScript, there is a top−level komodo object that contains both variables and utility
functions. These are:

The editor object for manipulation of code buffers.• 
The document object for manipulation of documents in memory.• 
The file type, corresponding to files on disk.• 
The doCommand(...) function to execute Komodo "commands".• 
The findPart(...) function to find other components (snippets, run commands, other macros, etc).• 
The interpolate(...) function for evaluation of interpolation codes.• 
The getWordUnderCursor() function to retrieve the word under the editing cursor.• 

Warning

The macro system is a powerful mechanism by which Komodo users can execute arbitrary code inside
the Komodo process. It is easy for novices to write macros that can significantly disrupt Komodo's
behavior, leading to instability and data loss. We encourage users to experiment with macros when not
working with important files.

Of particular note:

Macros that never terminate (for example, due to infinite loops) can hang Komodo.• 
Macros that modify the buffer should never be run in the background, as multiple threads
accessing the editor object could cause crashes.

• 

Macros that modify the editor object should be written with care, to avoid data loss• 

.

Feedback

Komodo 3.0 is the first release of Komodo with a published macro API. We expect the API to change in
response to customer feedback. As such, the API described below may change in future releases (we will
of course try to minimize backwards−incompatible changes). Questions and feedback on the API are
encouraged via the komodo−discuss mailing list.

The editor Object

Thekomodo.editor object corresponds to the main text editing widget that contains and manipulates

Macro API 74/437

http://aspn.activestate.com/ASPN/Mail/Browse/Threaded/komodo-discuss


files in the Editor Pane. It is a thin wrapper around the Scintilla widget, an open−source component
written by Neil Hodgson (www.scintilla.org).

The Scintilla API is large, complex and subject to change. This document only contains the calls most
relevant to Komodo, and notes some common patterns of use relevant to changing the editor widget.

editor Attributes

int currentPos
The location (in character units) of the caret.

int anchor
The location (in character units) of the selection anchor.

string text
The contents of the buffer.

string selText
The contents of the selection (readonly).

long scrollWidth
The width of the scroll area (in pixels).

long xOffset
The horizontal scroll position (in pixels) of the start of the text view.

boolean viewEOL
Whether to show end−of−line markers or not.

long viewWS
Whether to show whitespace characters (0: no, 1: yes).

long eOLMode
The characters that are inserted when the user presses 'Enter': either 'CRLF' (0 − the default on
Windows), 'CR' (1) or 'LF' (2 − the default on Unix).

long tabWidth
The size of a tab as a multiple of the size of a space character.

long indent
The size of indentation in terms of the width of a space.

boolean useTabs
Whether indentation should be created out of a mixture of tabs and spaces (1) or be based purely
on spaces (0).

boolean indentationGuides
Whether to show indentation guides or not.

readonly long firstVisibleLine
The line number of the first visible line in the text view.

long lineCount
The number of lines in the text view.

long textLength
The length of the current buffer in characters.

long targetStart
The start of the target region; see replaceTarget.

long targetEnd
The end of the target region; see replaceTarget.

Macro API 75/437

http://www.scintilla.org


long linesOnScreen
The number of complete lines visible on the screen.

komodo.editor Methods

void emptyUndoBuffer()
Empty the undo buffer.

void undo()
Undo the last action.

void cut()
Cut current selection (komodo.doCommand('cmdCut') is the preferred method).

void copy()
Copy current current selection.

void paste()
Replace current selection with the clipboard contents.

void clear()
Clear current selection.

long replaceTarget(in long length, in string text)
Replace XXX.

string getTextRange(in long min, in long max)
Return a range of characters from the current buffer.

void insertText(in long pos, in string text)
Insert text at a specified position.

void colourise(in long start, in long end)
Force the re−coloring of the specified range.

wchar getWCharAt(in long pos)
Get the (Unicode) character at the specified position.

void addText(in long length, in string text)
Add text to the end of the current buffer.

void selectAll()
Select the entire buffer.

void gotoLine(in long line)
Jump to the specified line.

void gotoPos(in long pos)
Jump to the specified position in the buffer.

void deleteBack()
Delete the character to the left of the cursor.

void newLine()
Add a newline (note: this is a less 'smart' newline than can be obtained using
komodo.doCommand('cmd_newlineExtra').

void redo()
Redo the last action.

boolean canRedo()
There is an action that can be redone.

void beginUndoAction()
Begin an undo block (see note).

Macro API 76/437



void endUndoAction()
End an undo block (see note).

long getColumn(in long pos)
Get the column (0−based) of the specified position.

long getLineEndPosition(in long line)
Get the position corresponding to the last character on the specified line (not including EOL
characters).

void setSel(in long start, in long end)
Make selection start atstart and end at end.

long lineFromPosition(in long pos)
Get the line number (0−indexed) from character positionpos.

long positionFromLine(in long line)
Get character position which begins the specified line.

void lineScroll(in long columns, in long lines)
This will attempt to scroll the display by the number of columns and lines that you specify.
Positive line values increase the line number at the top of the screen (i.e. they move the text
upwards as far as the user is concerned). Negative line values do the reverse.

void scrollCaret()
If the current position (this is the caret if there is no selection) is not visible, the view is scrolled
to make it visible.

long lineLength(in long line)
Return the length of the current line.

void replaceSel(string)
Replace current selection with the text in the string.

void lineDown()
Move cursor down one line.

void lineDownExtend()
Extend selection down one line.

void lineUp()
Move cursor up one line.

void lineUpExtend()
Extend selection up one line.

void charLeft()
Move cursor one character to the left.

void charLeftExtend()
Extend selection one character to the left.

void charRight()
Move cursor one character to the right.

void charRightExtend()
Extend selection one character to the right.

void wordLeft()
Move cursor one word to the left.

void wordLeftExtend()
Extend selection one word to the left.

void wordRight()
Move cursor one word to the right.

void wordRightExtend()

Macro API 77/437



Extend selection one word to the right.
void home()

Move cursor to the Home position.
void homeExtend()

Extend selection to the Home position.
void lineEnd()

Move cursor to the end of the line.
void lineEndExtend()

Extend selection to the end of the line.
void documentStart()

Move cursor to the start of the document.
void documentStartExtend()

Extend selection to the start of the document.
void documentEnd()

Move cursor to the end of the document.
void documentEndExtend()

Extend selection to the end of the document.
void pageUp()

Page up.
void pageUpExtend()

Extend selection one page up.
void pageDown()

Page down.
void pageDownExtend()

Extend selection one page down.
void editToggleOvertype()

Toggle overtype mode.
void vCHome()

Move cursor to the first non−whitespace character on a line or, if none, the beginning of a line.
void vCHomeExtend()

Extend the selection to the first non−whitespace character on a line or, if none, the beginning of a
line.

void zoomIn()
Increase font size.

void zoomOut()
Decrease font size.

void delWordLeft()
Delete word to the left of the cursor.

void delWordRight()
Delete word to the right of the cursor.

void lineCopy()
Copy line at the cursor.

void lineCut()
Cut line at the cursor.

void lineDelete()
Delete line at the cursor.

void lineTranspose()

Macro API 78/437



Transpose current line and previous line.
void lineDuplicate()

Duplicate current line.
void lowerCase()

Convert selection to lower case.
void upperCase()

Convert selection to upper case.
void lineScrollDown()

Scroll display down one line.
void lineScrollUp()

Scroll display up one line.
void deleteBackNotLine()

Delete last character except if at beginning of line.
void homeDisplay()

Move cursor to Home position for the current display line (as opposed to the buffer line when
word wrap is enabled).

void homeDisplayExtend()
Extend selection to the Home position for the current display line (as opposed to the buffer line
when word wrap is enabled).

void lineEndDisplay()
Move cursor to end of the current display line (as opposed to the buffer line when word wrap is
enabled).

void lineEndDisplayExtend()
Extend selection to the end of the current display line (as opposed to the buffer line when word
wrap is enabled).

void wordPartLeft()
Move cursor a word segment to the left. Word segments are marked by capitalisation
(aCamelCaseIdentifier) or underscores (an_under_bar_ident).

void wordPartLeftExtend()
Extend selection a word segment (as described in void wordPartLeft()) to the left.

void wordPartRight()
Move cursor a word segment (as described in void wordPartLeft()) to the right.

void wordPartRightExtend()
Extend selection a word segment (as described in void wordPartLeft()) to the right.

void delLineLeft()
Delete to beginning of line.

void delLineRight()
Delete to end of line.

void paraDown()
Move cursor one paragraph down.

void paraDownExtend()
Extend selection one paragraph down.

void paraUp()
Move cursor one paragraph up.

void paraUpExtend()
Extend selection one paragraph up.

Macro API 79/437



editor Object Notes

Invalid Parameters: The Scintilla API assumes that users of the API do their own error−checking.
Passing arguments that are out of bounds or otherwise erroneous can result in Komodo crashing.

The Undo Stack: Scintilla manages the "undo" stack. To treat a sequence of operations as a single
operation for the sake of Undo/Redo, wrap these operations in abeginUndoAction /
endUndoAction pair. The endUndoAction must be called even in the case of an exception in the
code. Otherwise, the undo stack will be corrupted and might lose data.

For example, for JavaScript:

    komodo.editor.beginUndoAction()
    try {
        ...  // do your sequence here
    } finally {
        komodo.editor.endUndoAction()
    }

For Python:

    komodo.editor.beginUndoAction()
    try:
        ...  # do your sequence here
    finally:
        komodo.editor.endUndoAction()

The document Object

Thekomodo.document object refers to the current document. A document contains the contents of
the file being edited. These contents will be different than those of the file on disk if the file is unsaved or
"dirty".

document Attributes

string baseName
The basename of the document (e.g."myfile.txt").

string displayPath
The display path of the document (e.g."C:\Code\myfile.txt").

file
The file object corresponding to the document (null if the document is unsaved).

string buffer
The contents of the document (Unicode string).

boolean isDirty
Whether there are unsaved changes to the document.

boolean isUntitled
Whether the document has never been saved.

string language

Macro API 80/437



The language that this document is viewed as ("Python","Perl", etc.

The file Object

Thefile object is an attribute of document objects, and corresponds to a wrapper object around the file
object.

file attributes

string URI
The URI to the file (e.g."file:///C:/Code/myfile.txt").

string displayPath
The display path of the file (e.g."C:\Code\myfile.txt"), or the URI if the URI is not of
thefile:// scheme.

string baseName
The base name of the file (e.g."myfile.txt").

string dirName
The directory of the file (e.g."C:\Code").

The komodo.doCommand Function

Signature:

    komodo.doCommand(commandId)

Execute the internal Komodo command specified bycommandId.

Command IDs and their corresponding functions are available in the Command ID reference.

Most editor−related commands require that the Editor Pane be in focus. To ensure focus before invoking
doCommand, set the focus explicitly as follows:

    komodo.view.setFocus()

The komodo.findPart Function

Signature:

    komodo.findPart(type, name, where) −> part

Find a "part" (the internal name for a component such as a snippet, another macro, a run command, etc)
in the Toolbox or a project.

type: The type of component to search for. It can be one of:• 
"snippet"♦ 

Macro API 81/437



"command"♦ 
"macro"♦ 
"file"♦ 
"folder"♦ 
"dialog"♦ 
"URL"♦ 
"template"♦ 
"DirectoryShortcut"♦ 

name: The component's name.• 
where: A string corresponding to the component container that should be searched. Supported
values are:
"toolbox"

search in the Toolbox
"shared toolbox"

search in the Shared Toolbox (if enabled)
"toolboxes"

search in both the Toolbox and the Shared Toolbox
"container"

search the project or Toolbox that contains the current macro
"*"

search all of the above

• 

The komodo.interpolate Function

Signature:

    komodo.interpolate(s, bracketed=False) −> string

Evaluate interpolation shortcuts in the given string.

s: The string to interpolate.• 
bracketed: An optional boolean value indicating whether plain (e.g.%F) or bracketed (e.g.
[[%F]]) syntax is being used. If not specified, plain interpolation is used.

• 

Some interpolation shortcuts cannot be used within Python macros. These include%P and%ask, and the
:orask modifier on other shortcuts. AValueError is raised if they are used.

The komodo.getWordUnderCursor Function

Signature:

    komodo.getWordUnderCursor() −> string

This function returns the word under the cursor in the current buffer.

Macro API 82/437



Komodo Command Id List

Breakpoint Manager

Add Breakpoint cmd_breakpoint_add

Add Tcl Spawnpoint cmd_spawnpoint_add

Delete All Breakpoints cmd_breakpoint_delete_all

Delete Breakpoint cmd_breakpoint_delete

Edit Breakpoint cmd_breakpoint_properties

Enable/Disable All Breakpoints cmd_breakpoint_toggle_all

Enable/Disable Breakpoint cmd_breakpoint_toggle

Show Breakpoint cmd_breakpoint_goto

Code Browser

Find Symbol cmd_codeBrowserFindSymbol

Go to Definition cmd_codeBrowserGoToDefinition

Locate current scope... cmd_codeBrowserLocate

Code Intelligence

Find Symbol cmd_codeIntelFindSymbol

Debugger

Add Watch Variable cmd_dbgAddVariable

Add/Edit Breakpoint... cmd_dbgBreakpointAddOrEdit

Add/Edit Spawnpoint... cmd_dbgSpawnpointAddOrEdit

Break Now cmd_dbgBreakNow

Clear All Breakpoints cmd_dbgBreakpointClearAllInURI

Delete Selected Variable cmd_dbgDeleteVariable

Detach cmd_dbgDetach

Disable/Enable Breakpoint cmd_dbgBreakpointToggle

Edit Selected Variable Name cmd_dbgWatchedVariable

Edit Selected Variable Value cmd_dbgEditVariable

Interactive Debugger Shell Clear Buffer cmd_dbgInteractiveClearBuffer

Interactive Debugger Shell cmd_dbgInteractive

Komodo Command Id List 83/437



Listen for Remote Debugger cmd_debuggerListener

Load HTML Preview cmd_dbgViewAsHTML

Make Selection a Watched Variable cmd_dbgMakeWatchedVariable

New Session cmd_dbgNewSession

Run Script cmd_dbgRun

Run to Cursor cmd_dbgStepCursor

Show Current Statement cmd_dbgShowCurrentStatement

Show Hidden Variables cmd_dbgShowHiddenVars

Start Default Interactive Shell cmd_startInteractiveShell

Start Perl Interactive Shell cmd_startPerlInteractiveShell

Start Python Interactive Shell cmd_startPythonInteractiveShell

Start Tcl Interactive Shell cmd_startTclInteractiveShell

Start cmd_dbgGo

Start/Find/Hide Default Interactive Shell cmd_toggleInteractiveShell

Step Forward cmd_dbgStepForward

Step In cmd_dbgStepIn

Step Out cmd_dbgStepOut

Step Over cmd_dbgStepOver

Stop cmd_dbgStop

Editor

Add as Snippet to Toolbox cmd_makeSnippetFromSelection

Back cmd_back

Backspace cmd_backSmart

Beginning of Line (first char/first column) cmd_home

Cancel AutoComplete cmd_cancel

Compare with file on disk cmd_showUnsavedChanges

Copy cmd_copy

Current File Settings cmd_editPrefsCurrent

Cut Line cmd_lineCut

Cut Region cmd_cutRegion

Cut rest of line cmd_killLine

Cut cmd_cut

Komodo Command Id List 84/437



Decrease Line Indent cmd_dedent

Delete Line cmd_lineDelete

Delete Word Left cmd_deleteWordLeft

Delete Word Right cmd_deleteWordRight

Delete cmd_delete

End of Line cmd_end

Exchange Current Point and Mark cmd_transientMarkExchangeWithPoint

Go to Beginning of word cmd_beginningOfWord

Go to End of Document cmd_documentEnd

Go to End of word cmd_endOfWord

Go to Line... cmd_gotoLine

Go to Next Bookmark cmd_bookmarkGotoNext

Go to Next Line cmd_lineNext

Go to Previous Bookmark cmd_bookmarkGotoPrevious

Go to Previous Line cmd_linePrevious

Go to Top of Document cmd_documentHome

Increase Line Indent cmd_indent

Insert Newline (align with current line) cmd_newlineSame

Insert Newline (continue comments) cmd_newlineExtra

Insert Newline (no favors) cmd_newlineBare

Insert Newline cmd_newline

Insert Next Key as Literal Character cmd_rawKey

Join current and next lines cmd_join

Move Back Part of Word cmd_wordPartRight

Move Forward Part of Word cmd_wordPartLeft

Move Left One Character cmd_left

Move One Character Right cmd_right

Move One Word Left cmd_wordLeft

Move One Word Right cmd_wordRight

Move to previous mark in mark ring cmd_transientMarkMoveBack

Page Down cmd_pageDown

Page Up cmd_pageUp

Paste and Select cmd_pasteAndSelect

Komodo Command Id List 85/437



Paste cmd_paste

Redo cmd_redo

Reflow paragraph(s) cmd_editReflow

Remove All Bookmarks cmd_bookmarkRemoveAll

Repeat next keystroke N times cmd_repeatNextCommandBy

Reset language to best guess cmd_viewAsGuessedLanguage

Scroll One Line Down cmd_lineScrollDown

Scroll One Line Up cmd_lineScrollUp

Scroll current line to center of screen cmd_editCenterVertically

Scroll current line to top of screen cmd_editMoveCurrentLineToTop

Select All cmd_editSelectAll

Select Next Character cmd_selectCharNext

Select Next Part of Word cmd_wordPartRightExtend

Select Next Word cmd_selectWordRight

Select Page Down cmd_selectPageDown

Select Page Up cmd_selectPageUp

Select Previous Character cmd_selectCharPrevious

Select Previous Part of Word cmd_wordPartLeftExtend

Select Previous Word cmd_selectWordLeft

Select to Beginning of Line (first char/first column)cmd_selectHome

Select to Beginning of word cmd_beginningOfWordExtend

Select to End of Document cmd_selectDocumentEnd

Select to End of Line cmd_selectEnd

Select to End of word cmd_endOfWordExtend

Select to Next Line cmd_selectLineNext

Select to Previous Line cmd_selectLinePrevious

Select to Top of Document cmd_selectDocumentHome

Set Mark cmd_transientMarkSet

Toggle Bookmark cmd_bookmarkToggle

Toggle Overtype/Insert Mode cmd_toggleOvertype

Transpose Current and Previous Characters cmd_transpose

Transpose Current and Previous Lines cmd_lineTranspose

Transpose Current and Previous Words cmd_transposeWords

Komodo Command Id List 86/437



Trigger preceding AutoComplete list or CallTip cmd_triggerPrecedingCompletion

Undo cmd_undo

Zoom Font Size Down cmd_fontZoomOut

Zoom Font Size Up cmd_fontZoomIn

Find

Find Next Result cmd_findNextResult

Find Next Selected cmd_findNextSelected

Find Next cmd_findNext

Find Previous cmd_findPrevious

Find in Files... cmd_findInFiles

Find... cmd_find

Incremental Search Backwards cmd_startIncrementalSearchBackwards

Incremental Search cmd_startIncrementalSearch

Replace... cmd_replace

General

Close All Windows cmd_closeAll

Close Project cmd_closeProject

Close Window cmd_bufferClose

Edit Properties cmd_editProperties

Export Selection as HTML... cmd_exportHTMLSelection

Export as HTML... cmd_exportHTML

Import From File System into Current Project cmd_importFromFS_Project

Least Recently Viewed File cmd_bufferNextLeastRecent

Most Recently Viewed File cmd_bufferNextMostRecent

New File (default type) cmd_new

New File... cmd_newTemplate

New Project... cmd_newProject

Next File cmd_bufferNext

Open File... cmd_open

Open Project... cmd_openProject

Open Remote File... cmd_open_remote

Komodo Command Id List 87/437



Open Template... cmd_openTemplate

Open URL... cmd_openURL

Preferences... cmd_editPrefs

Previous File cmd_bufferPrevious

Print Preview cmd_printPreview

Print Selection... cmd_printSelection

Print Setup... cmd_printSetup

Print... cmd_print

Quit cmd_quit

Refresh Status cmd_refreshStatus

Revert Project cmd_revertProject

Revert cmd_revert

Save All cmd_saveAll

Save As Remote... cmd_saveAs_remote

Save As Template cmd_saveAsTemplate

Save As... cmd_saveAs

Save Project As... cmd_saveProjectAs

Save Project cmd_saveProject

Save cmd_save

Help

About Komodo cmd_helpAbout

ActiveState Programmer Network cmd_helpASPN

ActiveState Support cmd_helpSupport

ActiveState Website cmd_helpActiveState

Alternate Help on Selection cmd_helpLanguageAlternate

Help... cmd_helpHelp

Komodo Bug Database cmd_helpViewBugs

Language−Specific Help on Selection cmd_helpLanguage

PHP Mailing Lists cmd_helpPHPMailingLists

PHP Reference (Web) cmd_helpPHPRef_Web

Perl Mailing Lists cmd_helpPerlMailingLists

Perl Reference (Local) cmd_helpPerlRef_Local

Komodo Command Id List 88/437



Perl Reference (Web) cmd_helpPerlRef_Web

Python Mailing Lists cmd_helpPythonMailingLists

Python Reference (Local) cmd_helpPythonRef_Local

Python Reference (Web) cmd_helpPythonRef_Web

Show Keybindings... cmd_helpShowKeybindings

Software Updates cmd_helpUpdates

Start Page cmd_openStartPage

Tcl Mailing Lists cmd_helpTclMailingLists

Tcl Reference (Local) cmd_helpTclRef_Local

Tcl Reference (Web) cmd_helpTclRef_Web

Tip of the Day... cmd_helpTipOfTheDay

XSLT Mailing Lists cmd_helpXSLTMailingLists

Macro

End Recording cmd_stopMacroMode

Execute Last Macro cmd_executeLastMacro

Pause Recording cmd_pauseMacroMode

Save to Toolbox cmd_saveMacroToToolbox

Start/Resume Recording cmd_startMacroMode

Projects/Toolbox

Add New Folder... cmd_addFolderPart

Add Remote File... cmd_addRemoteFilePart

Source Code

Clean Line Endings cmd_cleanLineEndings

Collapse All Folds cmd_foldCollapseAll

Collapse Fold cmd_foldCollapse

Comment Region cmd_comment

Complete Word (backwards) cmd_completeWordBack

Complete Word cmd_completeWord

Convert Selection to Lower Case cmd_convertLowerCase

Convert Selection to Upper Case cmd_convertUpperCase

Expand All Folds cmd_foldExpandAll

Komodo Command Id List 89/437



Expand Fold cmd_foldExpand

Find All Functions cmd_findAllFunctions

Find Next Function cmd_findNextFunction

Find Previous Function cmd_findPreviousFunction

Jump to Matching Brace cmd_jumpToMatchingBrace

Jump to corresponding line cmd_jumpToCorrespondingLine

Match Braces cmd_braceMatch

Next Syntax Error/Warning cmd_nextLintResult

Select Block cmd_blockSelect

Select to Matching Brace cmd_selectToMatchingBrace

Tabify Region... cmd_tabify

Un−comment Region cmd_uncomment

Un−tabify Region... cmd_untabify

Source Control

Add File cmd_SCCadd

Add Folder cmd_SCCadd_folder

Commit Changes in Folder cmd_SCCcommit_folder

Commit Changes cmd_SCCcommit

Compare Files in Folder cmd_SCCdiff_folder

Compare cmd_SCCdiff

Edit cmd_SCCedit

Remove File cmd_SCCremove

Revert Changes in Folder cmd_SCCrevert_folder

Revert Changes cmd_SCCrevert

Update Folder cmd_SCCupdate_folder

Update cmd_SCCupdate

Toolbox

Export Package cmd_toolboxExportPackage

Tools

Build Standalone Perl Application... cmd_toolsBuildPerlAppCommand

Run Command... cmd_toolsRunCommand

Komodo Command Id List 90/437



Rx Toolkit cmd_toolsRx

Visual Package Manager cmd_VPM

Watch File... cmd_toolsWatchFile

User Interface

Browser Preview cmd_browserPreview

Focus on Bottom Pane cmd_focusBottomPane

Focus on Editor cmd_focusEditor

Focus on Projects Pane cmd_focusProjectPane

Focus on Toolbox Pane cmd_focusToolboxPane

Move tab to another tab window cmd_movetab

Show/Hide Code Browser Tab cmd_viewCodeBrowser

Show/Hide Debug Toolbar cmd_viewdebugtoolbar

Show/Hide End of Lines cmd_viewEOL

Show/Hide Macros Toolbar cmd_viewmacrotoolbar

Show/Hide Open/Find Toolbar cmd_viewfindtoolbar

Show/Hide Output Pane cmd_viewBottomPane

Show/Hide Projects Pane cmd_viewLeftPane

Show/Hide Projects Tab cmd_viewProjects

Show/Hide SCC Toolbar cmd_viewscctoolbar

Show/Hide Standard Toolbar cmd_viewedittoolbar

Show/Hide Toolbar Button Text cmd_toggleButtonText

Show/Hide Toolbox Pane cmd_viewRightPane

Show/Hide Toolbox Tab cmd_viewToolbox

Show/Hide Tools Toolbar cmd_viewtoolstoolbar

Show/Hide Whitespace cmd_viewWhitespace

Show/Hide Workspace Toolbar cmd_viewworkspacetoolbar

Split view of tab cmd_splittab

Toggle splitter orientation cmd_rotateSplitter

Use Fixed/Proportional Font cmd_fontFixed

View Source cmd_focusSource

View/Hide Indentation Guides cmd_viewIndentationGuides

View/Hide Line Numbers cmd_viewLineNumbers

Komodo Command Id List 91/437



Word−wrap long lines cmd_wordWrap

Komodo Command Id List 92/437



Templates
Templates are files that contain the basic structure for new files. For example,
a Perl template for a specific project might contain the standard shebang line,
appropriate copyright statements, anduse statements calling a standard set of
modules.

Komodo includes a number of pre−configured templates for multiple
languages, and provides support for the creation and use of custom templates.
Templates can contain Interpolation Shortcuts (variables that get replaced by
context− or time−specific information, such as the complete path of the
current file or the date). Templates can be stored in a project or the Toolbox
for quick access. Templates can be shared via the Common Data Directory.

Feature Showcase

store a template
in a project

• 

Creating New Files from Templates

The New File menu option, invoked via File|New|New File, or via the associated key binding, provides
access to numerous templates for creating new files. These templates consist of standard code that is
generally included in programs of the selected type. For example, the Perl template creates a file with a
".pl" extension that contains the line "use strict;"; the XSLT stylesheet template creates a file
with an ".xsl" extension and an xml version and xsl stylesheet declaration.

To create a new file from a template file, in the New File dialog box, select the category in the Left Pane,
then double−click the template name in the Right Pane. A new file is created in the Komodo editor using
the code stored in the template.

When using the New File button on the Standard Toolbar, the template (if any) associated with the
language in the new files preferences is used to create the new file.

Alternatively, templates can be stored in a project or the Toolbox, and can be associated with a key
binding.

Creating Custom Templates

Custom templates are created in the Komodo editor; on saving the file, it is identified as a template.

Create Template File: In Komodo, create a file with the desired contents for the template.1. 
Save as Template: Select File|Save As Template.2. 

Custom templates are stored in the "My Templates" folder (as displayed in the New File dialog box). To
organize templates, click the Open Template Folder button. This displays the selected "Category"
(which corresponds to a disk location) in the operating system's file explorer application. Create new
directories and move template files between directories to organize templates.

Templates 93/437



Optionally, create shortcuts (on Windows) or symlinks (on Linux and Solaris) in the "My Templates"
directory structure that point to files located elsewhere on the system. Files should have an extension that
allows Komodo to correctly detect the language (according to the settings configured in Komodo's File
Associations preference).

If you create a directory alongsideMy Templates with the same name as a template group that
already exists in Komodo (such asCommon orWeb), the contents of the two directories are merged. If
files of the same name exist in both directories, the file in the directory at the same level asMy
Templates is used.

For example:

templates\
  My Templates\    <−−directory
    MyCGI.pl         <−−file in the My Templates directory
    TestSystem.tcl   <−−file in the My Templates directory
    Corporate        <−−shortcut/symlink to corporate templates         
  Common\          <−−directory
    Python.py        <−−file; takes precedence over the Python.py template
    MyCGI.pl         <−−file; displays in the Common folder

To edit an existing template, select File|Open|Template File. The directory containing theMy
Templates directory (and any "merge" directories, as described above) is displayed. Select the desired
template and make the desired changes.

Using Interpolation Shortcuts in Custom Templates

Interpolation shortcuts can be used in templates. When a new file is generated from a template file
containing interpolation shortcuts, the shortcut is converted to its relevant value.

For example, if a template file contains the interpolation shortcut[[%date:%d/%m/%Y
%H:%M:%S]], when a new file is created from that template, the interpolation shortcut is converted to
the current date and time in the following format:27/06/2004 11:10:21.

Interpolation shortcuts within templates use the bracketed syntax. Refer to the interpolation shortcut
section for a complete description of the code, syntax and usage.

Storing Templates in a Project or the Toolbox

Use the Komodo Project Manager or the Toolbox to store frequently used templates. In addition to the
general methods described in Adding Components to Projects and Adding Components to the Toolbox,
templates can be added to the Toolbox via the New File dialog box. Select Add to Toolbox to add the
selected template to the Toolbox.

Templates 94/437



Template Options

Right−click a template to access the following options:

Open Template: Use this option to create a new file from the selected template.• 
Cut/Copy/Paste: These options are used to remove the template from a project or the Toolbox, or
to move templates between the project and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the template from which the option is invoked. You are prompted to provide the name of the new
project file and the directory where it will be stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Templates can be archived and distributed among multiple Komodo users via
"packages". Packages are compressed archive files that contain the template from which the
Export Package option was invoked. Packages are stored in files with a ".kpz" extension, and
can be opened by any archiving utility that supportslibz (for example WinZip). The Export
Package option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as
Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name
and file location for the package. Exported packages can only be imported into "container"
objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting
Projects via Packages, or Folders − Import Contents from Package for more information.

• 

Rename: To change the name of a template (as displayed in the Project Manager or Toolbox),
select this option and enter a new name.

• 

Delete: To remove a template from a project or the Toolbox, select this option. The reference to
the template is deleted; the file containing the template is not deleted.

• 

Properties: Changes the title or the disk location of the template. In addition, the icon and key
binding assigned to the template are accessed via the Properties dialog box. See below for
instructions on altering the template's icon or key binding.

• 

Assigning Custom Icons to Templates

The default template icon can be replaced with custom icons. Komodo includes more than 600 icons;
alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images for best
results).

To assign a custom icon to a template:

On the Projects or Toolbox tab, right−click the desired template and select Properties.
Alternatively, click the template in the Projects or Toolbox tab, then select
Projects|template_name|Properties or Toolbox|template_name|Properties.

1. 

Templates 95/437



In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the Properties dialog box for the template, click OK. The custom icon is displayed next to the
template.

4. 

To revert to the default icon for a selected template:

On the Projects or Toolbox tab, right−click the desired template and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the template.2. 

Template Key Bindings

Custom key bindings can be assigned to templates stored in the Toolbox or in a Project. Use the Key
Binding tab in the template's Properties to specify the keystrokes that invoke the template. See Key
Bindings for Custom Components for more information.

Templates 96/437



Open Shortcuts
Open shortcuts are references stored in projects or the Toolbox that point to
directories on a local or network drive. When an open shortcut is invoked, the
standard Open File dialog box is displayed with the contents of the directory.
Open shortcuts make it quick to access deep directories that are frequently
used.

Refer to Adding Components to Projects or Adding Components to the
Toolbox for instructions on adding components to projects or the Toolbox. In
addition, open shortcuts can be created by right−clicking a file in a project or
the Toolbox and selecting Make "Open..." Shortcut.

Feature Showcase

create a
directory
shortcut

• 

Open Shortcut Options

To access options for the selected open shortcut, do one of the following:

Toolbox|shortcut_name|option or Project|shortcut_name|option: When an open shortcut is
selected in the Project Manager or Toolbox, use the Project or Toolbox drop−down menus to
access the list of options. The name of the open shortcut that is currently selected in a project or
the Toolbox is displayed on the drop−down menu.

• 

Context Menu: Right−click the open shortcut in a project or the Toolbox and select the desired
option.

• 

The following options are available:

Open (Shortcut): Use this option to display the contents of the folder specified in the open
shortcut.

• 

Cut/Copy/Paste: These options are used to remove components from a project or the Toolbox, or
to move components between the Project Manager and the Toolbox.

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the open shortcut from which the option is invoked. You are prompted to provide the name of the
new project file and the directory where it will be stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Open shortcuts can be archived and distributed among multiple Komodo users
via "packages". Packages are compressed archive files that contain the open shortcut from which
the Export Package option was invoked. Packages are stored in files with a ".kpz" extension,
and can be opened by any archiving utility that supportslibz (for example WinZip). The
Export Package option differs from the Export as Project File option in that copies of
filesystem−based components (such as files and dialog projects) are included in the archive.
Conversely, Export as Project File creates a project with a reference to the component's original
location and does not create copies of the components. When Export Package is invoked, you
are prompted for a name and file location for the package. Exported packages can only be
imported into "container" objects in Komodo, such as projects, the Toolbox, and folders within
projects and the Toolbox. See Toolbox − Exporting and Importing Toolbox Contents, Importing
and Exporting Projects via Packages, or Folders − Import Contents from Package for more

• 

Open Shortcuts 97/437



information.
Rename: To change the name of an open shortcut, select this option and enter a new name.• 
Delete: To remove an open shortcut from a project or the Toolbox, select this option. The open
shortcut is permanently deleted.

• 

Open Shortcut Properties

Open shortcut properties are used to alter the destination of the shortcut or to change the open shortcut's
name. The Properties dialog box is also used to assign a custom icon to an open shortcut or to assign a
custom key binding. To access the Properties dialog box, right−click the open shortcut and select
Properties.

Assigning Custom Icons to Open Shortcuts

The default open shortcut icon can be replaced with custom icons. Komodo includes more than 600
icons; alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images
for best results).

To assign a custom icon to an open shortcut:

On the Projects tab or Toolbox tab, right−click the desired open shortcut and select Properties.
Alternatively, click the open shortcut in the Projects tab or Toolbox tab, then select
Projects|shortcut_name|Properties or Toolbox|shortcut_name|Properties.

1. 

In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the Properties dialog box for the open shortcut, click OK. The custom icon is displayed next to
the open shortcut.

4. 

To revert to the default icon for a selected open shortcut:

On the Projects tab or Toolbox tab, right−click the desired open shortcut and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the open shortcut.2. 

Open Shortcut Key Bindings

Custom key bindings can be assigned to open shortcuts stored in the Toolbox or in a Project. Use the Key
Binding tab in the open shortcut's Properties to specify the keystrokes that invoke the open shortcut. See
Key Bindings for Custom Components for more information.

Open Shortcuts 98/437



Open Shortcuts 99/437



URL Shortcuts
URLs are components within a project or the Toolbox that are used to store frequently used URL
addresses. These URL shortcuts can be opened in an external browser (as specified in the Web and
Browser preference) or displayed in a new tab within Komodo.

Refer to Adding Components to Projects or Adding Components to the Toolbox for instructions on
adding components to projects or the Toolbox. In addition, URL shortcuts can be created by dragging a
URL from a browser address bar or from a Komodo tab onto a project or Toolbox. URLs must be
preceded by "http://".

To open a URL, double−click the URL name (which opens the URL in an external browser), use the
assigned key binding, or right−click the URL and select Open URL in browser or Open URL in tab.

URL Shortcut Options

To access options for the selected URL shortcut, do one of the following:

Toolbox|shortcut_name|option or Project|shortcut_name|option: When a URL shortcut is
selected in the Project Manager or Toolbox, use the Project or Toolbox drop−down menus to
access the list of options. The name of the URL shortcut that is currently selected in a project or
the Toolbox is displayed on the drop−down menu.

• 

Context Menu: Right−click the URL shortcut in a project or the Toolbox and select the desired
option.

• 

The following options are available:

Open URL in browser: Use this option to launch the default web browser (as specified in the
Web and Browser preference) and display the stored URL.

• 

Open URL in tab: Use this option to display the stored URL in a tab in the Komodo Editor Pane.• 
Cut/Copy/Paste: These options are used to remove the URL shortcut from a project or the
Toolbox, or to move URL shortcuts between the project and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the URL shortcut from which the option is invoked. You are prompted to provide the name of
the new project file and the directory where it will be stored. To open the new project file, select
File|Open|Project.

• 

Export Package: URLs can be archived and distributed among multiple Komodo users via
"packages". Packages are compressed archive files that contain the URL shortcut from which the
Export Package option was invoked. Packages are stored in files with a ".kpz" extension, and
can be opened by any archiving utility that supportslibz (for example WinZip). The Export
Package option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as
Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name
and file location for the package. Exported packages can only be imported into "container"

• 

URL Shortcuts 100/437



objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting
Projects via Packages, or Folders − Import Contents from Package for more information.
Rename: To change the name of a URL shortcut, select this option and enter a new name.• 
Delete: To remove a URL shortcut from a project or the Toolbox, select this option. The URL
shortcut is permanently deleted.

• 

URL Shortcut Properties

URL shortcut properties are used to alter the address of the URL or to change the URL shortcut's name.
The Properties dialog box is also used to assign a custom icon to a URL shortcut or to assign a custom
key binding. To access the Properties dialog box, right−click the URL shortcut and select Properties.

Assigning Custom Icons to URL Shortcuts

The default URL shortcut icon can be replaced with custom icons. Komodo includes more than 600
icons; alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images
for best results).

To assign a custom icon to a URL shortcut:

On the Projects tab or Toolbox tab, right−click the desired URL shortcut and select Properties.
Alternatively, click the URL shortcut in the Projects tab or Toolbox tab, then select
Projects|macro_name|Properties or Toolbox|macro_name|Properties.

1. 

In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the Properties dialog box for the URL shortcut, click OK. The custom icon is displayed next to
the URL shortcut.

4. 

To revert to the default icon for a selected URL shortcut:

On the Projects tab or Toolbox tab, right−click the desired URL shortcut and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the URL shortcut.2. 

URL Shortcut Key Bindings

Custom key bindings can be assigned to URL shortcuts stored in the Toolbox or in a Project. Use the Key
Binding tab in the URL shortcut's Properties to specify the keystrokes that invoke the URL shortcut. See
Key Bindings for Custom Components for more information.

URL Shortcuts 101/437



URL Shortcuts 102/437



Run Commands
Run commands are operating system commands run from within Komodo.
Use the Run Command dialog box to interact with the system command line
or shell while editing or debugging files in Komodo. Besides making it easy
to run simple and complex custom commands from within Komodo, the Run
Command dialog box can insert the results of shell commands into a
document in the Editor Pane, or pass the contents of a document to the system
command line or shell.

To view examples of run commands, see the "Samples" folder in the Toolbox.

Run commands can be stored for re−use in a project or the Toolbox, where
they can be assigned key bindings.

Access the last ten commands executed in the Run Command dialog box by
selecting Tools|Recent Commands, or using the 'Alt'+'T'+'M', number default
keyboard shortcut (where "number" represents the sequence number of the
previous command). The prefixes [i], [l] and [il] indicate that Insert output,
Pass selection as input or both were selected with the original command.

Tutorial

Run Commands• 
Feature Showcase

Google Run
Command

• 

Creating Run Commands

To create a run command, select Tools|Run Command. The Run Command dialog box is displayed.
Alternatively, invoke the Run Command dialog box from the Project Manager or the Toolbox by
selecting Add|New Command from the Project or Toolbox menu.

The Run Command dialog box can be toggled between its "simple" or "advanced" form by clicking the
More/Less button.

Simple Run Commands

This section describes the components of the Run Command dialog box that are displayed when the
advanced commands are hidden (via the More/Less button. See Advanced Run Commands for
information about the advanced fields.

Run: Enter the command to run.• 
Interpolation Shortcut: Click the arrow button to the right of the Run field to access a
drop−down list of interpolation shortcuts. When an interpolation shortcut is selected, it is
inserted at the current cursor position in the Run field. Windows users should enclose shortcuts
(except for the%(browser) shortcut) in quotation marks to ensure that spaces in filenames or
file paths are interpreted correctly by the system shell.

• 

Pass selection as input: If this check box is selected, the text currently highlighted in the editor
is passed to the command in the Run field. For example, if the Run field containsgrep

• 

Run Commands 103/437



myvar, each line containing "myvar" in the text selected in the editor is returned.
Insert output: If this check box is selected, the results of the command are inserted at the cursor
position in the current document.

• 

Add to Toolbox: If this check box is selected, the command is saved in the Toolbox.• 

Advanced Run Commands

Click the More button in the Run Command dialog box to display advanced options. The following
options are available:

Start in: Enter the directory where the command should be run, or click the Browse button to
navigate the filesystem. Click the arrow button to the right of the Start in field to select
interpolation shortcuts pertinent to the Start in setting. Interpolation shortcuts are inserted at the
current cursor position in the Run field.

• 

Run in: Specify the environment in which the command should be run. The options are:
Command Output Tab: The command is run in Komodo's Bottom Pane.♦ 
New Console: The command is run in a new shell or command window.♦ 
No Console (GUI Application): The command launches the specified application
without displaying output in a shell or on the Command Output tab.

♦ 

• 

Do not open output pane: If this check box is selected, the Bottom Pane containing the
Command Output tab does not automatically open when the command is run. To manually view
the Bottom Pane, select View|Command Output. (This option is only accessible if the Run in
field is set to Command Output tab.)

• 

Parse output with: If this check box is selected, the field to the right is used to enter a regular
expression that parses the output. (This option is only accessible if the Run in field is set to
Command Output tab.)

• 

Show parsed output as list: If output parsing is configured, select Show parsed output as list to
display the output in list format on the Command Output tab. (This option is only accessible if
the Run in field is set to Command Output tab.)

• 

Environment Variables: Use the Environment Variables section of the dialog box to configure
new environment variables or change the value of existing environment variables for the duration
of the run. To add or alter an environment variable, click New and configure the following
values:

Variable Name: Enter a name for the variable.♦ 
Variable Value: Enter a value for the variable.♦ 
Interpolation Shortcut: Click the arrow button to the right of the Variable Value field to
insert an interpolation shortcut pertinent to the Variable Value setting. The interpolation
shortcut is inserted at the current cursor position in the Variable Value field.

♦ 

Add Path: Click this button to insert a directory as the variable value.♦ 

• 

Save advanced options as defaults: If this check box is selected, the current settings are stored as
the defaults for the Run Command dialog box.

• 

Run Commands 104/437



Command Output Tab

By default, the commands run in the Command Output tab on Komodo's Bottom Pane. (Use the Run in
field to run the command in a new shell window, or to run a graphical application without a console.)

If the command prompts for input, enter it directly on the Command Output tab. Output written to
"stderr" (standard error output) is displayed in red at the top of the tab. Click the Close button at the top
right of the Command Output tab to terminate a running command. Click the Toggle Raw/Parsed
Output View button to jump from parsed results to raw output and vice versa. (Parsing is enabled and
configured via the Parse output with field.)

Storing Run Commands in a Project or the Toolbox

To add a run command to the Toolbox, select Add to Toolbox in the Run Command dialog box. Run
commands can also be added to projects or the Toolbox via the methods described in Storing Run
Commands in a Project or the Toolbox.

To run a command stored in the Toolbox or in a project, double−click the run command's name, use the
assigned key binding, or right−click the run command and select Run.

To access run command options for the selected run command, right−click the run command's name. The
options are as follows:

Run Command: Execute the stored run command.• 
Cut/Copy/Paste: These options are used to remove the run command from a project or the
Toolbox, or to move a run command between a project and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the run command from which the option is invoked. You are prompted to provide the name of
the new project file and the directory where it is stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Run commands can be archived and distributed among multiple Komodo users
via "packages". Packages are compressed archive files that contain the run command from which
the Export Package option was invoked. Packages are stored in files with a ".kpz" extension,
and can be opened by any archiving utility that supportslibz (for example WinZip). The
Export Package option differs from the Export as Project File option in that copies of
filesystem−based components (such as files and dialog projects) are included in the archive.
Conversely, Export as Project File creates a project with a reference to the component's original
location and does not create copies of the components. When Export Package is invoked, you
are prompted for a name and file location for the package. Exported packages can only be
imported into "container" objects in Komodo, such as projects, the Toolbox, and folders within
projects and the Toolbox. See Toolbox − Exporting and Importing Toolbox Contents, Projects −
Importing and Exporting Projects via Packages, or Folders − Import Contents from Package for
more information.

• 

Rename: To change the name of a run command, select this option and enter a new name.• 

Run Commands 105/437



Delete: To remove a run command from a project or the Toolbox, select this option. The run
command is permanently deleted.

• 

Run Command Properties

To access the properties of a run command stored in a project or the Toolbox, right−click the run
command and select Properties. The Properties dialog box contains all the elements of the Run
Command dialog box, and is therefore used for editing stored run commands. In addition, the Properties
dialog box is used to assign a custom icon to the run command, and to assign a custom key binding.

Assigning Custom Icons to Run Commands

The default run command icon can be replaced with custom icons. Komodo includes more than 600
icons; alternatively, select a custom image stored on a local or network drive (use 16x16−pixel images
for best results).

To assign a custom icon to a run command:

On the Projects tab or Toolbox tab, right−click the desired run command and select Properties.
Alternatively, click the run command in the Projects tab or Toolbox tab, then select
Projects|runcommand_name|Properties or Toolboxruncommand_name|Properties.

1. 

In the Properties dialog box, click Change Icon.2. 
In the Pick an Icon dialog box, select a new icon and click OK. Alternatively, click Choose
Other, and browse to the desired image file.

3. 

In the properties dialog box for the run command, click OK. The custom icon is displayed next to
the run command.

4. 

To revert to the default icon for a selected run command:

On the Projects tab or Toolbox tab, right−click the desired run command and select Properties.1. 
Click Reset, then click OK. The default icon is displayed next to the run command.2. 

Run Command Key Bindings

Custom key bindings can be assigned to run commands stored in the Toolbox or in a Project. Use the Key
Binding tab in the run command's Properties to specify the keystrokes that invoke the run command. See
Key Bindings for Custom Components for more information.

Run Commands 106/437



Custom Toolbars and Menus
Custom toolbars and menus are used to extend Komodo's default menus and
toolbars with menus and toolbars containing custom items. Any component
that can be stored in a project or the Toolbox can be stored in a custom toolbar
or menu. A custom toolbar might contain frequently used run commands and
snippets; a custom menu might contain folders with the contents of a local
filesystem.

Custom toolbars and menus are created and configured within the Project
Manager and/or the Toolbox. Custom toolbars and menus contained in
projects are only displayed when the projects are open in the Project Manager;
custom toolbars and menus contained in the Toolbox are always displayed.

Feature Showcase

create a custom
toolbar

• 

Creating Custom Toolbars and Menus

On the Project or Toolbox menu, select Add|New Custom Toolbar or Add|New Custom Menu.
Enter a name for the new component.

1. 

Copy and paste or drag and drop the item(s) to be included on the toolbar or menu onto the icon
created in the previous step. Alternatively, right−click the custom menu or toolbar name and
select Add. For a complete description of adding components to containers (such as projects and
custom menus and toolbars), see the Projects section of the documentation. New toolbars are
displayed alongside the default Komodo toolbars and can be accessed via the View|Toolbars
menu. New menus are displayed to the right of the default Komodo menus.

2. 

Custom Menu and Toolbar Options

To access options for a custom menu or toolbar, do one of the following:

Toolbox|menuortoolbar_name|option or Project|menuortoolbar_name|option: When a custom
menu or toolbar is selected in the Project Manager or Toolbox, use the Project or Toolbox menus
to access the list of options. The name of the custom menu or toolbar that is currently selected in
a project or the Toolbox is displayed on the menu.

• 

Context Menu: Right−click the custom menu or toolbar in a project or the Toolbox and select
the desired option.

• 

The following options are available:

Export as Project File: When this option is invoked, a new project file is created that contains
the custom menu or toolbar from which the option is invoked. You are prompted to provide the
name of the new project file and the directory where it will be stored. To open the new project
file, select File|Open|Project.

• 

Export Package: Snippets can be archived and distributed among multiple Komodo users via
Packages. Packages are compressed archive files that contain the snippet from which the Export

• 

Custom Toolbars and Menus 107/437



Package option was invoked. Packages are stored in files with a ".kpz" extension, and can be
opened by any archiving utility that supportslibz (for example WinZip). The Export Package
option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as
Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name
and file location for the package. Exported packages can only be imported into "container"
objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting
Projects via Packages, or Folders − Import Contents from Package for more information.
Rename: To change the name of a custom menu or toolbar, select this option and enter a new
name.

• 

Cut/Copy/Paste: These options are used to remove the custom menu or toolbar from a project or
the Toolbox, or to move custom menu or toolbars between the project and the Toolbox (and vice
versa).

• 

Add: Use this option to add components to the selected custom menu or toolbar. All components
can be added to custom menu or toolbars in the same manner they are added to projects. Refer to
the individual component documentation, or the project documentation for more information.

• 

Delete: To remove a custom menu or toolbar from a project or the Toolbox, select this option.
The custom menu or toolbar is permanently deleted.

• 

Custom Menu and Toolbar Properties

Custom menu or toolbar properties are used to alter the name of the custom menu or toolbar, or change
the custom menu or toolbar's display order. To access the Properties dialog box, right−click the custom
menu or toolbar and select Properties.

Custom menus are displayed between the default Tools and Window menus. If multiple custom menus
are in effect, the display order depends on the menu's Priority setting. New menus have a default priority
of 100; alter the priority of custom menus to control the left−to−right order of display.

Custom toolbars are displayed to the right of default Komodo toolbars. If necessary, a new row is created
for their display. If multiple custom toolbars are in effect, the display order depends on the toolbar's
Priority setting. New toolbars have a default priority of 100; alter the priority of custom toolbars to
control the left−to−right order of display.

To assign a letter to be used in combination with the 'Alt' key for menu access, enter a shortcut letter in
the Menu Access Key field. If the letter is already assigned to a Komodo core function, you are prompted
to enter a different letter.

Custom Toolbars and Menus 108/437



Debugging Programs
The Komodo debugger is a tool for analyzing programs on a line−by−line
basis, monitoring and altering variables, and watching output as it is
generated. Debugging features include:

breakpoint and spawnpoint control• 
remote debugging• 
stepping• 
watching variables• 
viewing the call stack• 
sending input• 
adding command−line arguments• 
interactive shell• 

The sections that follow contain general information about the debugger that
is applicable to each language. Komodo provides debugging support for Perl,
Python, PHP, XSLT and Tcl. For information about configuring languages
and language−specific debugger functions, see:

Debugging Perl• 
Debugging Python• 
Debugging PHP• 
Debugging XSLT• 
Debugging Tcl• 

Notes

Perl Debugging on Windows 98/Me requires ActivePerl Build 623 or
higher. Restart your machine after you install ActivePerl to be sure
that your system'sPATH variable is updated with the location of Perl.

• 

Be sure you meet the software prerequisites for debugging, as
described in the Installation Guide.

• 

Tutorials

Perl tutorial• 
Python tutorial• 
PHP tutorial• 
Tcl tutorial• 
XSLT tutorial• 

Feature Showcases

conditional
breakpoints

• 

XSLT debug
view

• 

Starting the Debugger

To start the debugger, do one of the following:

Debug Toolbar: Select Go/Continue or Step In.• 
Keyboard: Use the associated key binding.• 
Debug Menu: Click Go/Continue or Step In.• 

By default, the Debugging Options dialog box is displayed (unless the debugger preference has been
configured to start without displaying the dialog box). To override the debugger preference, hold down
the 'Ctrl' key while invoking the key binding for starting the debug session. (Select Help|List Key
Bindings to view the current key bindings; use the key bindings preference to configure custom key

Debugging Programs 109/437

http://www.activestate.com/Products/ActivePerl


bindings.) Alternatively, the 'Ctrl' key can be used to suppress the display of the Debugging Options
dialog box.

If multiple files are open in the Editor Pane, the program that is currently displayed is debugged. If no
breakpoints are set, Go/Continue causes the debugger to run to the end without stopping. Step In moves
through the program one line at a time.

If the Bottom Pane is hidden, Komodo automatically shows it.

To run a program without debugging, do one of the following:

Debug Menu: Select Run without debugging.• 
Keyboard: Use the associated key binding.• 

To run a program to the current cursor position, do one of the following:

Debug Menu: Select Run to Cursor.• 
Keyboard: Use the associated key binding.• 

Multi−Session Debugging

Komodo supports the concurrent debugging of multiple applications, or multi−session debugging. With
multi−session debugging, Komodo debugs more than one project at a time, regardless of the supported
languages used in the programs being debugged.

When debugging multiple sessions, each session has a unique Debug tab (located in the Bottom Pane)
for controlling the debug actions specific to that process. A Debug tab is created each time a new
debugger session is started. To close a Debug tab, click the X button at the top right corner.

To start multiple debugging sessions, do one of the following:

Debug Menu: Click Start New Session.• 
Keyboard: Use the associated key binding.• 

Debugging Options

When the debugger is invoked, the Debugging Options dialog box is displayed. Use this to configure the
system environment, command−line arguments, CGI environment, and other debugging options.

Not all of the debugging options described below apply to all languages. The available tabs and fields
depend on the interpreter used to debug the file. The interpreter is determined by the File Associations
configured for the active file in the Editor Pane.

Debugging Programs 110/437



To suppress the display of the Debugging Options dialog box, hold down the 'Ctrl' key while clicking the
desired debugging button on the Debug Toolbar, or use the desired keyboard shortcut. Change the default
display by selecting Skip debug options dialog from Edit|Preferences|Debugger.

Global Options

These options are displayed regardless of which configuration tabs are available.

Simulate CGI Environment: Select this check box to display two additional CGI option tabs −
CGI Environment and CGI Input.

• 

Debug in separate console: Select this check box to display the debug process in a separate
console window rather than the Output tab. As applicable, the console window displays program
output and prompts for program input.

• 

General Tab

Interpreter Arguments: As required, enter command line options and arguments for the
interpreter in this field. Use the Shortcut button to the right of the input field to select common
language−specific options.

• 

Script: Enter the name of the script to be debugged. By default, this field contains the full path
and name of the program displayed in the Editor pane. When manually specifying a script, UNC
or SMB paths (which identify remote machines on a local area network via the "\\" prefix) are
not supported. Instead, map the network share to a drive letter (Windows) or mount the share on
the filesystem (Unix).

• 

Script Arguments: As required, enter arguments for the script in this field as they would appear
on the command line. Multiple Arguments must be separated with spaces. If the Simulate CGI
Environment box is selected, and CGI Input variables of the type GET are set, the contents of
this field are ignored.

• 

Directory: Specify the directory to start the program in. If unset, the program starts in the
directory where it resides.

• 

Select the input XML file: (XSLT only) Specify the name and location of the input XML file.• 
Select the interpreter to use for debugging: (PHP and Tcl only) For Tcl programs, select tclsh or
the wish interpreter, depending on whether you are debugging a console or a GUI application.
For PHP programs, select the CLI (Command Line Interface) or CGI (Common Gateway
Interface) interpreter. These selections reference the interpreters configured under
Edit|Preferences... in the Language Configuration section.

• 

Select the directory that contains the php.ini file: (PHP only) If more than one version of PHP
exists on the system, specify the directory that contains the php.ini file you wish to use.

• 

Disable Output Buffering (PHP only): Output from the PHP interpreter is not buffered (it is
displayed as it occurs) if this option is enabled. This option has no effect when Simulate CGI
Environment is selected. To disable output buffering in CGI emulation mode, comment out the
output_buffering setting in php.ini with a ";" character, or set it to "off".

• 

Debugging Programs 111/437



Enable Implicit Flush (PHP only): The PHP output layer flushes itself automatically after every
output block. If this option is not enabled, output is buffered by the operating system and is
flushed periodically by the operating system, or when the application is finished. This option has
no effect when Simulate CGI Environment is selected.

• 

Environment Tab

The Environment tab displays all environment variables set on the system. Use this tab to add new
variables or change the values of existing variables for the duration of the debug session. The Default
Environment Variables pane displays environment variables that have been declared on your system.
The User Environment Variables pane displays environment variables set in the saved configuration
which override the Default Environment Variables.

Change variables by adding a new variable with the same name and a new value. These changes have no
effect outside of the Komodo debugger and are stored in each saved configuration.

To Add New Variables: Click New and enter the Variable Name and Variable Value in the
Environment Variable dialog box. To add one or more directories to the Variable Value field,
click Add Path and navigate to the desired directory.

• 

To Edit Existing Variables: Select the variable, click Edit, then change as desired. This creates a
new variable with the same name and the desired value. (User Environment Variables take
precedence over Default Environment Variables.)

• 

To Delete a Variable: Select the variable from the User Environment Variables pane and click
Delete. Default Environment Variables cannot be deleted, but can be set to an empty value.

• 

CGI Environment Tab

The CGI Environment tab is only displayed if the Simulate CGI Environment check box is selected on
the General tab. It displays CGI Environment Variables commonly configured on a web server. Use this
tab to alter existing variables and add new variables. Variable changes have no effect outside of the
Komodo debugger and are stored in each saved configuration.

To Add New Variables: Click New, and enter the Variable Name and Variable Value in the
Environment Variable dialog box. To add one or more directories to the Variable Value field,
click Add Path and navigate to the desired directory.

• 

To Edit Existing Variables: Select the variable, click Edit, then change as desired. This creates a
new variable with the same name and the desired value. (User CGI Environment Variables take
precedence over Default CGI Environment Variables.)

• 

To Delete a Variable: Select the variable from the User CGI Environment Variables pane and
click Delete.

• 

Debugging Programs 112/437



CGI Input Tab

The CGI Input tab is only displayed if the Simulate CGI Environment check box is selected on the
Global Options tab. It is used to configure the CGI form type and variables for the purpose of simulating
CGI input. Note that Komodo's CGI emulation does not generate HTTP Request Headers; rather, it
executes the CGI directly by emulating a web server environment.

Request Method: Select the request method that has been assigned to the form in the CGI
program.

• 

Post Type: Select the format in which data is sent from the browser to the server.• 

Use the Request Variable section of the dialog box to create variables that are processed by your CGI
program. These variables are displayed in the Browser Arguments section of the dialog box.

Type: Specify the type of input associated with the variable (GET, POST, cookie or file).• 
Name: Enter the variable name as specified in the CGI program.• 
Value: Enter the value for the variable specified in the Name field. To provide a directory path
and file, click the Browse Files button, select the desired file and click Add. (To accommodate
file uploads, select Multipart as the form's POST method.)

• 

To alter variables: Click on the desired variable in the Browser Arguments section of the dialog box,
make changes in the Type, Name and Value fields, then click Update.

To delete variables: click on the desired variable in the Browser Arguments section of the dialog box,
and click Delete.

Storing Debug Configurations

Debugging options can be saved as "named configurations" in the Debug Configuration panel. To save
the current configuration:

Click New...1. 
Enter a unique Configuration Name.2. 
Click OK.3. 

Existing saved configurations can be selected from the drop−down list. If you wish to delete a saved
configuration, select it from the list and click Delete.

If the file being debugged is part of a project that is currently open, these preferences are saved in that
project. If not, this configuration is automatically saved as part of the file's Properties and Settings
(although they cannot be altered via the file's Properties dialog box).

Debugging Programs 113/437



Breakpoints and Tcl Spawnpoints

Breakpoints are set at lines in the program where you want program execution to pause. Enabled
breakpoints appear as solid red circles in the left margin of the Editor pane and are also listed on the
Breakpoints tab during debugging. Disabled breakpoints appear as white circles with a red outline.
Double−clicking on an enabled or disabled breakpoint from the Breakpoints tab opens the associated file
in the Editor Pane and shifts focus to the line number for that break location.

Spawnpoints are set at points in a Tcl script where you want an external application to execute (spawn).
When a spawnpoint is encountered during the debugging process, Komodo configures the spawned
application to start as a new debugger session. Both the initial and spawned debugger sessions run
concurrently. Enabled spawnpoints appear as solid green arrows in the left margin of the Editor pane and
are also listed on the Breakpoints tab during debugging. Disabled spawnpoints appear as white arrows
with a green outline. Double−clicking an enabled or disabled spawnpoint from the Breakpoints tab opens
the associated file in the Editor pane and shifts focus to the line number coinciding with that spawnpoint
location.

Breakpoint and Spawnpoint Management

Breakpoints and spawnpoints can be monitored and managed on the Breakpoints tab in the Bottom pane
(displayed during debugging or invoked by selecting View|Tabs|Command Output). This tab lists all
breakpoints and spawnpoints set in the program. Use the Breakpoints tab to:

toggle breakpoints• 
toggle spawnpoints• 
go to source code• 
set breakpoint properties• 

Toggling Breakpoints

Breakpoints and Spawnpoints can be toggled between Enabled, Disabled and Deleted. To toggle a
breakpoint, do one of the following:

Breakpoint Margin: Click on the line you wish to break at once to enable a breakpoint, a second
time to Disable it, and a third time to Delete it.

• 

Debug Menu: Click Enable/Disable Breakpoint once to enable a breakpoint on the current line,
a second time to Disable it, and a third time to Delete it.

• 

Keyboard: Press 'F9' once to enable a breakpoint on the current line, a second time to Disable it,
and a third time to Delete it.

• 

To create a new breakpoint in the Breakpoints tab:

Debugging Programs 114/437



Click the New button and then select New Breakpoint or right−click in the Breakpoints pane and
select Add|New Breakpoint on the context menu.

1. 

The following Breakpoint Properties are required:2. 
Language: By default, the language of the program being debugged.♦ 
File: The location of the file where the breakpoint is being set.♦ 
Line: The line number in the file where the spawnpoint is to be set.♦ 
Enable: Select the check box to enable the breakpoint.♦ 

Click OK.3. 

To delete a breakpoint in the Breakpoints tab, do one of the following:

Select the breakpoint and click the Delete Breakpoint button• 
Right−click on the breakpoint and select Delete.• 

To clear or remove multiple breakpoints, do one of the following:

Debug Menu: Click Clear All Breakpoints.• 
Breakpoint Tab: Click the Delete All Breakpoints button.• 
Keyboard:: Use the associated key binding.• 

To disable or enable all breakpoints:

On the Breakpoints tab, click the Disable/Enable All Breakpoints button. All breakpoints are
disabled if previously enabled, or enabled if previously disabled.

• 

Toggling Spawnpoints

To add a Tcl spawnpoint, use the Breakpoints tab:

Click the New button and then select New Tcl Spawnpoint or right−click in the Breakpoints list
and select Add|New Tcl Spawnpoint on the context menu.

1. 

The following properties are configurable in the Spawnpoint Properties dialog box:2. 
Language: Tcl♦ 
File: The location of the file where the spawnpoint is to be set (for example,
C:\tcl_tutorial\dlg_tcl_check.tcl).

♦ 

Line: The line number in the file where the spawnpoint is to be set.♦ 
Enable: Select the check box to enable the spawnpoint. Deselect the check box to
disable the spawnpoint.

♦ 

Click OK.3. 

To delete a spawnpoint in the Breakpoints tab, do one of the following:

Select the spawnpoint and click the Delete Breakpoint button• 
Right−click on the spawnpoint and select Delete.• 

Debugging Programs 115/437



To clear or remove multiple spawnpoints, do one of the following:

Debug Menu: Click Clear All Breakpoints.• 
Breakpoint Tab: Click the Delete All Breakpoints button.• 
Keyboard:: Use the associated key binding.• 

To disable or enable all spawnpoints:

On the Breakpoints tab, click the Disable/Enable All Breakpoints button. All spawnpoints are
disabled if previously enabled, or enabled if previously disabled.

• 

Note: Breakpoints and spawnpoints added or modified while a program is running are not necessarily
updated in the breakpoint manager. To add breakpoints while debugging, interrupt the debugging session
using the Break button to ensure that the new breakpoint is properly updated.

Go to the Source Code

To open the source code in the Editor Pane at the line number where the breakpoint or spawnpoint is set,
do one of the following:

Breakpoints Tab: Double−click the breakpoint to view the associated source code.• 
Breakpoints Tab: Select the desired breakpoint and click the Go to the Source Code button.• 

Breakpoint Properties

When adding or editing a breakpoint in the Breakpoint tab, a Breakpoint Properties dialog box appears.
This dialog box contains a tab for each available breakpoint type. Change the breakpoint type by
switching to a different tab.

Each tab is split into two parts, separated by a horizontal line. The top section contains configuration
items that are required; the bottom section contains configuration options that are optional. The last item
on this tab is the Enable checkbox.

Language: The language of the file where the breakpoint is to be set.• 
File: The line number on which to break.• 
Condition: Evaluate some code and break if it evaluates to true. For example,0==0, as the
condition would always evaluate to true and cause the debugger to break. The condition should
be specified in the syntax of the language selected in the Language drop−down list.

• 

Watch: Break when the value of the specified variable (or expression) is set or changed.• 
Function Call: Break after the specified function is called.• 
Function Return: Break after the specified function has finished executing.• 
Exception: Break when the specified exception is caught.• 
Line: Break on the specified line.• 

Debugging Programs 116/437



Hit Counts: Break when the condition specified in any of the above has been met a certain
number of times. Each time the debugger engine reaches a breakpoint, it adds one to the count. It
then looks at the hit count setting to see if the evaluation allows for a break at that moment.
There are two configuration items related to hit counts, the condition and the count. There are
three types of conditions:

Break when hit count is greater than or equal to♦ 
Break when hit count is equal to♦ 
Break when hit count is a multiple of♦ 

For example:

Set a breakpoint on line 2 of a script.

  for 1 in range(256):
  print 'hello'

1. 

Define a hit condition 'Break when hit count is a multiple of'.2. 
Enter the value 5. The debugger breaks every 5th time it passes the line with the print
statement.

3. 

• 

Not all breakpoint types are supported for all languages. The following table shows breakpoint support
by language:

Type Tcl Perl PHP XSLT Python

Line Number Yes Yes Yes Yes Yes

Function Call No Yes Yes Yes Yes

Function Return No Yes Yes Yes Yes

Exception No No No No Yes

Conditional Yes Yes No Yes Yes

Watch Yes Yes No No Yes

Forcing a Break

Use the Break Now function to stop debugging an application at the current execution point, and then
continue debugging from that point. For example, use this control when debugging applications running
long processes. To force a break while debugging an application, do one of the following:

Debug Menu: Select Break Now.• 
Debug Toolbar: Click the Break Now button.• 

Debugging Programs 117/437



Remote Debugging

Remote debugging is the process of debugging programs locally while they execute on remote machines.
This is useful for debugging applications in the environments where they would normally be run (e.g.
CGI programs in a live web server setting), and for systems built using client/server architecture.

Komodo can be set to listen for remote debugger sessions continuously. Additionally, you can set remote
debugger preferences and check listener status of the current listener configuration. For instructions on
configuring specific languages for remote debugging, see:

Debugging Perl• 
Debugging Python• 
Debugging PHP• 
Debugging XSLT• 
Debugging Tcl• 

Listen for Remote Debugger

To toggle continuous listening for remote debugging, do one of the following:

Debug Menu: select Listen for Remote Debugger.• 
Keyboard: Use the associated key binding.• 

Note: A check mark appears when Listen for Remote Debugger is enabled. Otherwise, this feature is
disabled.

Check Listener Status

To check the status and current configuration of the Komodo debugger:

On the Debug menu, select Listener Status. The Debugger Listener status screen appears.1. 
Click OK after reviewing listener status, or use the associated key binding.2. 

Multi−User Debugging

When multiple users are running Komodo session, configure Komodo's Debugger Connection Options
to listen for debug connections on port "0" (see Set Debugger Preferences). The system provides

Debugging Programs 118/437



Komodo with a unique port each time Komodo is started, allowing multiple users on the system to debug
applications simultaneously. In remote debugging, this requires the remote debugger application to be
manually set to connect on the system−allocated port unless the Debugger Proxy is used.

Debugger Proxy

Remote debugger processes can communicate with Komodo through the DBGP proxy (debugger
protocol proxy). The proxy allows Komodo to use a system−allocated listener port for debugging without
the user having to manually configure the same port number on the remote debugger. This is useful for
running multiple remote debugging sessions and on networks where a remote debugging process can not
connect to Komodo directly. The proxy can run on the local machine, the remote machine, or a separate
machine.

A typical DBGP Proxy connection is established as follows:

Komodo contacts the DBGP proxy and identifies itself with:1. 
Hostname or IP: The hostname or IP address of the machine Komodo is running on.
This is set tolocalhost or 127.0.0.1 if the debugger is running locally.

♦ 

Port Number: The port configured in Preferences|Debugger or the system−assigned
port.

♦ 

Proxy Key: The Proxy Key configured in Preferences|Debugger. If unset, Komodo will
use the USER or USERNAME environment variable value.

♦ 

2. 

The DBGP Proxy stores this information.3. 
The remote debugging process contacts the DBGP Proxy, providing an IDE Key which
corresponds to the Proxy Key specified in Komodo. By default, this connection happens on port
9000 but can be configured to use another port (see language−specific debugging instructions
and "−d" option below).

4. 

DBGP Proxy uses the IDE Key value to match the connection to the appropriate instance of
Komodo.

5. 

The remote debugger connects to Komodo on the system−assigned or user−specified port.6. 

To start the proxy on Windows:

        cd <Komodo installation directory>\python\dbgp
        dbgpProxy

To start the proxy on Linux or Solaris (requires Python 2.2 or later):

        cd /<Komodo installation directory>/python/dbgp
        python dbgpProxy.py

The following options are available:

−d <hostname:port>: Listener port for debugger processes.• 
−i <hostname:port>: Listener port for Komodo instances.• 

Debugging Programs 119/437



−l <log_level>: Logging level. Logging is dumped tostout and can be set to CRITICAL,
ERROR, WARN, INFO or DEBUG.

• 

Example

If you are debugging scripts on a remote web server that cannot connect to Komodo directly because of a
firewall, you can run dbgpProxy on an intermediary server (e.g. a gateway) which can connect to
Komodo and the web server on specified ports. The three servers in this example are:

workstation: The machine running Komodo. The following preferences are set:
Listen for Remote Debugger is enabled.♦ 
Enable Debugger Proxy is selected.♦ 
Listen for debug connections on port is set to '0' (use system−assigned port)♦ 
Proxy Listener Address is set togateway:9001♦ 
Proxy Key is set to "jdoe"♦ 

Debug|Listener Status displays a system−assigned Host Port of 37016.

1. 

gateway: A gateway server with access to the internal and external networks. The proxy is
running with the following options:

  dbgpProxy −i gateway:9001 −d gateway:9000

2. 

webserver: The machine running a Python CGI script called test.py.3. 

The debugging process on 'webserver' is launched with the following command:

        python dbgpClient.py −d gateway:9000 −k "jdoe" test.py

The remote debugger running on 'webserver' (dbgpClient.py in this case) connects to the proxy
(dbgpProxy.py) running on 'gateway'. The proxy uses the IDE Key "jdoe" to connect the debugger
process to the Komodo instance listening with a Proxy Key of "jdoe". The proxy continues to
communicate with the remote debugger on port 9000, but routes the debugging session to Komodo on
port 37016.

Sending Input to the Program

When a program prompts for input, enter the desired input in the console window or Output tab
(depending on the Debugging Options configuration), and press Enter to continue.

Debugging Programs 120/437



Using Debugger Commands

Debugger Command Description

This table lists common tasks and their Komodo commands.

To do this Press this

Run a program

The debugger runs until the program ends.
Debug Menu: Select Run Without
Debugging

• 

Keyboard: Press 'F7'• 

Start the debugger

The debugger runs until it encounters a
breakpoint, or until the program ends.

Debug Menu: Select Go/Continue• 
Keyboard: Press 'F5'• 
Debug Toolbar: Click the
Go/Continue button

• 

Step In

The debugger executes the next unit of code,
and then stops at the subsequent line.

Debug Menu: Select Step In• 
Keyboard: Press 'F11'• 
Debug Toolbar: Click the Step In
button

• 

Step Over

Like Step In, Step Over executes the next unit
of code. However, if the next unit contains a
function call, Step Over executes the entire
function then stops at the first unit outside of
the function.

Debug Menu: Select Step Over• 
Keyboard: Press 'F10'• 
Debug Toolbar: Click the Step Over
button

• 

Step Out

The debugger executes the remainder of the
current function and then stops at the first unit
outside of the function.

Debug Menu: Select Step Out• 
Keyboard: Use the associated key
binding

• 

Debug Toolbar: Click the Step Out
button

• 

Run to Cursor

The debugger runs until it reaches the line
where the cursor is currently located.

Debug Menu: Select Run to Cursor.• 
Keyboard: Use the associated key
binding.

• 

Debugging Programs 121/437



Break Now

Pause debugging an application at the current
execution point. Go/Continue continues
debugging from that point.

Debug Menu: Select Break Now• 
Debug Toolbar: Click the Break Now
button

• 

Stop

Stop the debugging session. Go/Continue
restarts debugging from the beginning of the
program.

Debug Menu: Select Stop• 
Keyboard: Use the associated key
binding.

• 

Debug Toolbar: Click the Stop button• 

Toggle breakpoint

Enables, disables, or deletes a breakpoint on
the current line.

Debug Menu: Select Disable/Enable
Breakpoint

• 

Keyboard: Press 'F9'• 

Show Current Statement

Moves the editing cursor from any position in
the file to the statement at which the debugger
is stopped.

Debug Menu: Select Show Current
Statement

• 

Keyboard: Use the associated key
binding

• 

Detach

Stop the debugging process but continue
application process execution.

Debug Menu: Select Detach• 
Debug Toolbar: Click the Detach
button

• 

Debugger Stepping Behavior

Instead of running to the end of a program or to the next breakpoint, the debugger can also step through
code one statement at a time. The following Debug menu items and toolbar buttons control stepping
behavior:

Step In: Executes the current statement and pauses at the following statement.• 
Step Over: Executes the current statement. If the line of code calls a function or method, the
function or method is executed in the background and the debugger pauses at the statement that
follows the original one.

• 

Step Out: When the debugger is within a function or method, Step Out will execute the code
without stepping through the code line by line. The debugger will stop on the line of code
following the function or method call in the calling program.

• 

When stepping through a program which calls a function or method from an external program (e.g. a

Debugging Programs 122/437



module or package) the debugger steps into the external program at the point where the function or
method is called, opening it in a new tab. Stepping continues in the external program until the function
call is completed.

Note: Perl operatorssort, map, andgrep behave like other looping constructs with respect to stepping
behavior in the debugger. When Komodo has stopped at one of these operators, Step Over stops at the
first statement or expression used within the first argument of these operators.

For example, if the debugger steps over a statement containing aforeach, while, map,grep, or
sort looping construct that evaluates its body five times, the debugger remains inside that loop for five
iterations. When it steps over on the sixth iteration, the debugger exits the loop and stops at the next
statement.

To skip execution of such looping constructs, set a breakpoint on the statement following the construct,
and continue until Komodo reaches that breakpoint.

Viewing the Debugging Session

When the Komodo debugger is started, the Debug tab opens in the Bottom Pane. This tab consolidates
views of the debugger output, call stack, program variables (local and global), and watch variables. The
Debug tab also contains a Debug Toolbar for stepping in, out, over, and running functions while
debugging.

When debugging more than one session at a time (multi−session debugging), a Debug tab for each
session is accessible in the Bottom Pane. The Debug tab selected is the session currently being debugged.
To change to another debug session, select the Debug tab for that session (identified by the filename of
the program). When a new session is started, a new Debug tab is created and Komodo automatically
switches to that new session.

The Debug tab is divided into two sub−panes, which have tabs of their own. The right sub−pane contains
the Output, Call Stack, and HTML Preview tabs. The left sub−pane contains variable tabs.

Viewing Variables

The variables section of the Debug tab is divided into tabs that vary according to the language of the
program being debugged. (Language variations are described below.) Variables with multiple values
(such as arrays) are indicated by plus and minus symbols to the left of the variable name.

To Expand or Collapse Variables: Plus symbols indicate variables with multiple values that can be
expanded; minus symbols indicate variables that can be collapsed. Click on the plus or minus symbol to
expand or collapse the variable list.

Debugging Programs 123/437



To Change Variable Values: Double−click in the variable's Value field and enter the desired value. (The
value of nodes in XML documents cannot be changed.)

Python Variables and Objects

While debugging Python programs, variables and objects are displayed on the Locals, Globals, and Code
Objects tabs:

Locals: Displays variables referenced within the current function. If the program is currently
outside of a function, all variables are displayed.

• 

Globals: Displays all used program variables.• 
Code Objects: Displays an expandable tree view of all classes, functions, and their attributes.• 

During Python debugging sessions, click the Show Hidden Variables button to display special

Python variables prefixed with double underscores, such as__doc__, __dict__, etc.

PHP and Tcl Variables

While debugging PHP and Tcl programs, variables are displayed on the Locals and Globals tabs:

Locals: Displays variables referenced within the current function. If the program is currently
outside of a function, all variables are displayed.

• 

Globals: Displays all used program variables. Note: PHP "Super Globals" ($_POST, $_GET,
etc.) are hidden by default. The Show Hidden Variables button will toggle them on and off.

• 

Perl Variables

While debugging Perl programs, Argument and Special tabs are displayed in addition to the Locals and
Globals tabs listed above.

Argument: Displays parameters for the current subroutine (i.e. @_).• 
Special: Displays current Perl special variables (i.e. @ARGV, %ENV, @INC, $0, etc.)• 

XSLT Variables

While debugging XSLT programs, data nodes and variables are displayed on the Locals and Globals
tabs:

Debugging Programs 124/437



Locals: Displays data nodes from the input XML document. Only nodes contained in the context
of the template specified in the Call Stack are displayed.

• 

Globals: Displaysxsl:param and xsl:variable elements declared at the top level of the
program.

• 

Setting Watched Variables

The Watch variable tab monitors selected variables and expressions. Use the Watch variable tab to watch
variables, or expressions based on variables, by typing expressions, dragging and dropping expressions
from an editor, or selecting variables from one of the other variable tabs. Also, use the Watch tab to
change the value of a variable or remove a variable from the Watch tab.

Watched variables can be added, manipulated and removed regardless of whether the debugger is
currently running.

To watch one or more variables during program execution:

Click the Add button on the Watch variables tab and type a variable name in the dialog box• 
Select the variable in the editor (or any other drag−and−drop aware application), then drag and
drop the variable into the Watch tab

• 

Right−click a variable in one of the other variable tabs and select Add to Watch from the context
menu.

• 

The Watch variable tab supports viewing the results of expressions made with watched variables. For
example, in a Perl program with scalar variables$base and $height the following expression could
be entered:

        ($base / 2) * $height

To enter arbitrary expressions on the Watch variable tab:

Click the Add button above the Watch variable tab.1. 
Enter an arbitrary expression in the dialog box.2. 
Click OK.3. 

To change the values of variables:

Double−click the variable on the Watch variable tab and specify a value. Currently, only the
values of simple variables can be changed. For example, values of variables such as 'a.b[3]' (in
Python) or '$a{b}−>[3]' (in Perl) cannot be changed.

• 

Note: This function is not available for arbitrary expressions.

Double−click the variable on the Locals or Globals pane and specify a value in the dialog box.• 

Debugging Programs 125/437



To remove a variable from the Watch variable tab, select the variable and click Delete on the bottom
right toolbar. Alternatively, right−click the desired variable and select Remove Watch on the context
menu.

Output Tab

The Output tab is used to view program output and to send input to the program being debugged. The
following standard data streams are handled in the Output tab:

stderr: program output• 
stderr: errors• 
stdin: program input (not supported for Perl or PHP during remote debugging)• 

When debugging Tcl and Python, ifstdin is requested by the program, a red percent character is
shown in the margin of the Output tab.

HTML Preview Tab

If the program produces HTML output, select the HTML tab to preview the rendered output. Unlike the
Output tab, the HTML preview is not constantly updated. Use the Reload HTML View button in the
bottom−pane toolbar to update the preview.

Viewing the Call Stack

The call stack is a data area or buffer used for storing requests that need to be handled by the program.
Komodo's stack stores temporary data such as variables and parameters and operates as a push−down list.
New data moves to the top of the stack and pushes the older data down in a "last−in, first−out"
arrangement.

To view the call stack in a current debugging session, select the Call Stack tab in the right pane of the
Debug tab.

There is one line in this tab per stack frame at any point in the execution of a program. The calling frame
contains the information about a function call, including the filename, the line number, and any
parameters or local variables.

Debugging Programs 126/437



Watching Files

When debugging a program that writes output to another file, or when watching programs execute, you
can watch the output or the log file using Komodo's File Watcher.

The Watch File tool shows a file as the file is being updated on disk. It has no relationship with variable
viewing, except that, while debugging, it is often useful to watch variables change state and files change
content.

To use the File Watcher:

On the Tools menu, select Watch File.1. 
Browse to the desired file and click OK.2. 
Run the program.3. 

Detaching the Debugger

Use the Detach control to stop the debugging process but continue running the application. When
application execution is detached from the debugging process, output continues to print on the Debug tab
until the application finishes running.

To detach application execution from the debugging process, do one of the following:

Debug Menu: Select Detach.• 
Debug Toolbar: Click the Detach button.• 

Stopping the Debugger

To stop the Komodo debugger, do one of the following:

Debug Menu: Select Stop.• 
Keyboard: Use the associated key binding.• 
Debug Toolbar: Click the Stop button.• 

The debug session ends.

Debugging Programs 127/437



Debugging Perl
Komodo can debug Perl programs locally or remotely, including debugging in
CGI environments. The instructions below describe how to configure
Komodo and Perl for debugging. For general information about using the
Komodo debugger, see Komodo Debugger Functions.

Tutorial

Perl Tutorial• 

Configuring the Perl Debugger

To specify which Perl interpreter Komodo uses to debug and run Perl programs:

On the Edit menu, click Preferences.1. 
In the Preferences dialog box under Languages, click Perl. Komodo searches for Perl
interpreters on your system and displays them in the drop−down list.

2. 

If the preferred interpreter is in this list, click to select it. If not, click Browse to locate it.3. 
Click OK.4. 

To start a local Perl debugging session:

On the Debug menu or Debug Toolbar, click Go/Continue ('F5') or Step In ('F11') to invoke the
debugging session. See Komodo Debugger Functions for full instructions on using Komodo's debugging
functionality.

Debugging Perl Remotely

When debugging a Perl program remotely, the program is executed on the remote system and the debug
output is sent to Komodo. Komodo controls the debugging session (e.g. stepping and breakpoints) once
the session starts on the remote system.

Perl remote debugging works on any system that can run the version of perl5db.pl distributed with
Komodo. ActivePerl and most other distributions of Perl (version 5.6 or greater) will work.

Note: If you have the ActiveState Perl Development Kit (PDK) installed, follow the instructions for PDK
users to disable the PDK debugger before continuing.

To debug Perl programs remotely:

Step One: Configure the Remote Machine

Log in to the remote machine.1. 

Debugging Perl 128/437

http://www.activestate.com/Products/ActivePerl/


Copy Komodo's perl debugger and it's associated libraries to the remote machine by copying the
entire dbgp/perllib sub−directory of the Komodo installation to the new machine, or download a
package from the Komodo Remote Debugging page.

Note: Do not copy perl5db.pl to the Perl "lib" directory on the remote machine, as this will
overwrite the standard perl5db.pl file.

2. 

On the remote machine, set thePERL5LIB environment variable to the location of the new
perl5db.pl and it's libraries. For example, if the remote machine is running Windows and perllib
directory was copied to C:\misc\perllib, set the variable as follows:

set PERL5LIB=C:\misc\perllib

If the remote machine is running Linux and perllib was copied to the
/usr/home/me/perl/vperl_debugger directory, set the variable as follows:

export
PERL5LIB=/usr/home/me/perl/vperl_debugger/perllib

3. 

On the remote machine, set thePERLDB_OPTS andDBGP_IDEKEY variables. This tells the
Perl interpreter on the remote machine where to connect to Komodo or the DBGP Proxy and
how to identify itself.

        PERLDB_OPTS=RemotePort=<hostname>:<port>
        DBGP_IDEKEY=<ide_key>

The port number must match the port number specified in Edit|Preferences|Debugger.
Click Debug|Listener Status to check the current port.

♦ 

Replace<hostname> with the name or IP address of the machine running Komodo.♦ 
If DBGP_IDEKEY is unset, the USER or USERNAME environment variable is used as
the IDE Key.

♦ 

The variable definitions must be on one line.♦ 

For example:

Windows 2000, NT, XP

        set PERLDB_OPTS="RemotePort=127.0.0.1:9000"
        set DBGP_IDEKEY="jdoe"

Windows Me

Use the MSCONFIG utility (Start|Run|MSCONFIG). Select the Environment tab, and create a
new variable with the Variable Name ofPERLDB_OPTS, and the Variable Value of

4. 

Debugging Perl 129/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging


RemotePort=127.0.0.1:9000.

Unix Systems

        export PERLDB_OPTS="RemotePort=127.0.0.1:9000"
        export DBGP_IDEKEY="jdoe"

Step Two: Listen for Remote Debugger

In Komodo, on the Debug menu, click Listen for Remote Debugger.

Step Three: Start the Perl Program on the Remote Machine

Start the debugging process using the "−d" flag:

perl −d program_name.pl

A Perl Debug tab is displayed in Komodo.

Step Four: Debug the Perl Program using Komodo

Use 'F11' to Step In, or 'F5' (Go) to run to the first breakpoint. See Komodo Debugger Functions for full
instructions on using Komodo's debugging functionality.

Disabling and Enabling the Perl Dev Kit (PDK) Debugger

If you have installed the ActiveState Perl Development Kit (PDK) on the remote machine, the system
may be configured to use the PDK debugger when a Perl debug session (perl −d) is launched. To use
Komodo's debugger, disable the PDK debugger on the remote machine first. If necessary, you can
re−enable the PDK debugger on the remote machine later.

Disabling the PDK Debugger on the Remote Machine

To disable the PDK debugger on the remote machine, perform one of the following three procedures:

Option 1:

At the command shell, enter:

        set PERL5DB="BEGIN { require 'c:\...\Komodo−3.0\dbgp\perllib−5.6\perl5db.pl'; }"

To re−enable the PDK debugger, set thePERL5DB variable to an empty string.

Debugging Perl 130/437



Option 2:

Right−click the My Computer icon and select Properties.1. 
Click the Advanced tab.2. 
Click Environment Variables.3. 
In the System variables section, click New.4. 
Set the Variable Name field toPERL5DB.5. 
Set the Variable Value field toBEGIN { require 'perl5db.pl'}.6. 
Click OK three times to exit.7. 

Note: These changes take effect only in new DOS windows.

To re−enable the PDK debugger, delete thePERL5DB variable.

Option 3:

Change the registry setting forHKEY_LOCAL_MACHINE\SOFTWARE\Perl. Rename the variable
PERL5DB toxPERL5DB.

Warning: This registry setting is semi−permanent and persists through machine restarts.

To re−enable the PDK debugger, rename thexPERL5DB registry variable back toPERL5DB. This
change takes effect only in new DOS windows.

Configuring Perl for CGI Debugging

Debugging CGI programs on live production servers can seriously impair performance. We recommend
using a test server for CGI debugging. Instructions for configuring Microsoft IIS and Apache (Unix)
servers are shown below; for other web servers, use these examples and the web server software
documentation as a guide for modifying the server environment.

The settings and paths listed are examples only. Substitute these with the specific paths, hostnames and
port numbers of your server as necessary

Configuring a Microsoft IIS Web Server

Modify the Server's Environment Variables: Right−click the My Computer icon on the desktop,
and select Properties. On the Advanced tab, click the Environment Variables button. Add the
following items to the System Variables pane:

  PERL5LIB="C:\Program Files\Komodo−x.x\dbgp\perllib−5.x"
  PERLDB_OPTS=RemotePort=<hostname>:<port>
  DBGP_IDEKEY="<ide_key>"

• 

Debugging Perl 131/437



Modify the Internet Information Services Configuration: Open the Internet Information
Services manager. Select the Home Directories tab, and click the Configuration button. Add (or
modify) an entry for Perl with the following characteristics:

  Extension = .pl
  Executable Path = c:\perl\bin\perl.exe −d "%s" %s

• 

Restart the Server You must restart the server in order for the above changes to take effect.• 

Configuring an Apache Web Server

Ensure that Perl CGI scripts are operating correctly on the Apache server before proceeding with CGI
debugger configuration. If you are running Apache under Windows, disable the
ScriptInterpreterSource registry in the httpd.conf file.

Remote debugging works with a stand−alone Perl interpreter or with the mod_perl Apache module.

Modify the httpd.conf file: The following values can be configured for a specific virtual host or
all hosts. Add the following values in the appropriate sections:

  SetEnv PERL5LIB "C:\Program Files\Komodo−x.x\dbgp\perllib−5.x"
  SetEnv PERLDB_OPTS "RemotePort=<hostname>:<port>"
  SetEnv DBGP_IDEKEY "<ide_key>"

Note: You must enable themod_env Apache module (see
httpd.apache.org/docs/mod/mod_env.html) for the SetEnv directive to function.

• 

Modify the Perl Script: Add the "−d" flag to the "shebang" line:

  #!/perl/bin/perl −d

• 

Starting a CGI Debugging Session

After the configuration is complete, debug programs as follows:

In Komodo, on the Debug menu, click Listen for Remote Debugger.• 
Using a web browser, access your CGI script.• 
A Perl Debug tab is displayed in Komodo. See Komodo Debugger Functions for full instructions
on using Komodo's debugging functionality.

• 

Debugging Perl 132/437

http://httpd.apache.org/docs/mod/mod_env.html


Debugging Python
Komodo can be used to debug Python programs locally or remotely, including
debugging in CGI environments. The instructions below describe how to
configure Komodo and Python for debugging. For general information about
using the Komodo debugger, see Komodo Debugger Functions.

Tutorial

Python Tutorial• 

Configuring the Python Debugger

To specify which Python interpreter Komodo should use to debug and run Python programs locally:

On the Edit menu, click Preferences.1. 
In the Preferences dialog box under Languages, click Python. Komodo searches for Python
interpreters on your system and displays them in the drop−down list.

2. 

If the preferred interpreter is in this list, click to select the interpreter. If not, click Browse to
locate it.

3. 

Click OK.4. 

On the Debug menu or Debug Toolbar, click Go/Continue ('F5') or Step In ('F11') to invoke the
debugging session. See Komodo Debugger Functions for full instructions on using Komodo's debugging
functionality.

Using the Python Remote Debugger

When debugging a Python program remotely, the program is executed on the remote machine, and the
debug output is sent to Komodo. Komodo controls the debugging session once the session starts on the
remote machine.

Installing the Python Remote Debugger on the Remote Machine

To debug a Python program remotely, the Python debugger modules must be installed on the remote
machine. These files can be found in the python/dbgp sub−directory of the Komodo installation and are
also are also available for download from the Komodo Remote Debugging page.

To install the Python Remote Debugger:

Copy all files from the python/dbgp sub−directory of the local Komodo installation to a directory
on the remote machine. The Python Remote Debugger requires thelogging module. To verify
that this module installed, run the following command on the remote machine:

  python −c "import logging"

1. 

Debugging Python 133/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging


If this command returns an "ImportError", copy the python/dbgp/logging sub−directory to the
remote machine as well.
On the remote machine, add the directory containing the copied files to thePYTHONPATH
environment variable. For example, on Windows, if you copied the files to a directory called
C:\debugger, enter the following at the command line:

  set PYTHONPATH=%PATH%;C:\debugger

2. 

Invoking the Python Remote Debugger

Python remote debugging sessions can be started from the command line or from within the Python
program itself. Both methods require the installation of the Python remote debugger modules on the
remote machine (see Installing the Python Remote Debugger).

Running dbgpClient.py from the Command Line

To start a Python remote debugging session from the command line:

In Komodo, On the Debug menu, click Listen for Remote Debugger.1. 
Log in to the remote machine.2. 
On the remote machine, run the dbgpClient.py program:

    python dbgpClient.py −d <komodo_host:port> script.py [script args]

The following options are available:

−d: Sets the hostname (or IP address) and port where Komodo or DBGP Proxy is
running. See Debug|Listener Status in Komodo to check the current port setting.

♦ 

−k: Sets theide_key used with DBGP Proxy.♦ 
−h: Displays a complete list of options.♦ 

3. 

A Python Debug tab opens in Komodo. Use 'F11' to Step In, or 'F5' (Go/Continue) to run to the
first breakpoint. See Komodo Debugger Functions for full instructions on using Komodo's
debugging functionality.

4. 

The port number set with the "−d" switch must match the port number configured in Komodo under
Edit|Preferences|Debugger. Click Debug|Listener Status to check your current settings.

If you are connecting to a DBGP Proxy, be sure to specify anide_key value with the "−k" switch. For
example:

    python dbgpClient.py −d <komodo_host:port> −k <ide_key> script.py [script args]

Debugging Python 134/437



Set theide_key to the value listed in Debug|Listener Status|Proxy Key. It is taken from the
environment variable specified under Proxy Key in Komodo's Debugger Preferences (USER or
USERNAME by default).

Using dbgpClient Functions in Python Programs

To start a Python remote debugging session from within a Python program:

Ensure that the Python remote debugging programs are installed on the remote computer as per
the instructions in Installing the Python Remote Debugger.

• 

Import dbgpClient.py into your Python program (import dbgpClient) or import just the
brk() function (from dbgpClient import brk).

• 

Set a hard breakpoint withbrk() one line above where you want the program to break. The
brk() function takes the following arguments:

host: machine running Komodo or the DBGP Proxy (useslocalhost if unspecified)♦ 
port: port to connect on (uses 9000 if unspecified)♦ 
idekey: key used to identify the debugging session to Komodo or the DBGP Proxy (uses
the value of the USER or USERNAME environment variable if unspecified)

♦ 

• 

Thebrk() function connects to the host and port specified, then breaks on the current line of
the script. Under local debugging, callingbrk() causes the debugger engine to break on the
current line, since the engine is already connected to Komodo.

• 

The following script uses this method to initiate debugging:

        from dbgpClient import brk
        def foo():
            print "hello ",
            brk(host='mybox', port=3210)
            print "world!"

        foo()

This example initiates a debugging connection to Komodo running on a machine called "mybox" on port
3210.

Just−in−Time Debugging

"Just−in−time debugging" allows the remote debugger to connect to Komodo if an uncaught exception
occurs during execution. To prevent these uncaught exceptions from ending your program, add the
following lines of code to the beginning of your script:

        from dbgpClient import brkOnExcept
        brkOnExcept(host='mybox', port=3210)

Debugging Python 135/437



The script runs until an exception occurs, at which point a Python interactive shell starts in Komodo. The
traceback appears in the Output tab, and the variables from the traceback appear in the Variables tabs.
The Call Stack tab displays the call stack location of the exception.

ThebrkOnExcept() function takes the same arguments asbrk(). As with brk(),
brkOnExcept() attempts to connect to localhost on port 9000 with an idekey of USER or
USERNAME if no arguments are specified.

Caveats

Output from the debug process appears on both the remote machine and in Komodo.• 
If dbgpClient.brk is executed when Komodo is not listening, the program runs without any
breakpoint.

• 

CGI Debugging

To debug CGI applications written in Python:

Configure Python to be used as the CGI (or embedded extension) for your Web server. For
information on configuring Python, refer to the Python documentation.

• 

Follow the steps outlined in Using dbgpClient Functions in Python Programs to call the Python
remote debugger from within the application. Start the remote application through a web browser
instead of running it from the command line.

• 

Debugging Python 136/437

http://python.org/doc/


Debugging PHP
Komodo can be used to debug PHP programs locally or remotely. Remote
PHP debugging encompases all types of PHP debugging not initiated from
within Komodo, including debugging PHP scripts running under a local web
server.

The instructions below describe how to configure Komodo and PHP for
debugging. For general information about using the Komodo debugger, see
Komodo Debugger Functions.

Komodo uses a PHP debugger extension called Xdebug that must be installed
for Komodo to debug PHP scripts. This can be done manually or with the
PHP Configuration Wizard. Pre−built binaries named "php_xdebug.dll" (for
Windows) or "xdebug.so" (for Linux and Solaris) are provided with Komodo
and are also available for download from the Komodo Remote Debugging
page.

See www.xdebug.org/install.php for instructions on compiling Xdebug from
source on other platforms.

Tutorial

PHP Tutorial• 

Installing PHP

PHP debugging in Komodo requires PHP version 4.3.1 or greater (including PHP 5). Download PHP
from http://www.php.net/downloads.php.

To debug PHP scripts in a web environment, be sure PHP is operating correctly with your web server
before configuring the debugger extension. Consult the PHP documentation for details on configuring
PHP with various web servers.

Windows

If you are unfamiliar with the installation of PHP, we recommend using the Windows InstallShield
package. To install the PHP executable or SAPI module manually, see the PHP website. Be sure that the
PHP directory is included in your system's PATH.

Linux

Your Linux system may already have PHP installed. Login and type 'php −v' to determine the version of
your current PHP interpreter. If it is earlier than version 4.3.1 you must upgrade. PHP must also support
loading dynamic extensions (the default for PHP under Linux). If it does not, reinstall PHP as per the
instructions on the PHP website.

RPMs are available for Red Hat from www.redhat.com/apps/support/updates.html• 
RPMs for for other distributions are available from http://rpmfind.net/.• 

Debugging PHP 137/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging
http://www.xdebug.org/install.php
http://www.php.net/downloads.php
http://www.php.net/manual/en/installation.php
http://www.php.net/manual/en/install.windows.php#install.windows.manual
http://www.php.net/manual/en/install.linux.php
http://www.redhat.com/apps/support/updates.html
http://rpmfind.net/


When installing PHP to a non−default directory, you must add the following argument to the
./configure command:

        −−with−config−file−path=/path/to/php.ini

...where /path/to/php.ini is the full path to the directory where the php.ini file is located.

Refer to the PHP website for further information on installing PHP.

Local PHP Debugging

In local debugging mode, Komodo executes PHP directly. While this is convenient for quickly
debugging a PHP script, if your script depends on the availability of a web server, use Remote PHP
Debugging even if the script is running on the same machine as Komodo. This makes it possible to test
the script in its true environment.

When debugging locally, certain environment variables are not available, such as those provided by the
CGI environment. However, it is possible to simulate a CGI environment by specifying CGI environment
variables and CGI input in the Debugging Options dialog box. It is is not necessary to install a web
server to use Komodo's local debugging features. Once you have configured PHP to use the debugger
extension as described below, you can debug your scripts by opening a PHP file and using Komodo
Debugger Functions.

If you receive an error message when attempting to debug a PHP script, check the PHP troubleshooting
section of the Komodo FAQ.

Configuring Local PHP Debugging

Before debugging PHP scripts in Komodo, PHP must be configured to use the Xdebug extension
(php_xdebug.dll or xdebug.so).

Komodo's PHP Configuration Wizard simplifies the process of selecting a PHP executable to use for
local debugging. It copies the php.ini file to a new directory, modifies it for debugging, then copies the
Xdebug extension to the directory defined in the .ini file. The PHP Configuration Wizard should only be
used to configure local debugging. To debug PHP remotely, see Configuring Remote PHP Debugging.

To start the wizard:

On the Edit menu, click Preferences.1. 
Under Languages, select PHP.2. 
Click the Debugger Configuration Wizard button to display the wizard's introductory window.3. 
Click Next to begin configuring PHP for debugging.4. 

The wizard will guide you through the steps necessary to configure the debugging extension.

Debugging PHP 138/437

http://www.php.net/manual/en/


Choose Installation:

The first step assumes that you have already installed PHP. If you have more than one version of
PHP installed, choose the version to configure. Browse to the directory containing the PHP
executable or enter the directory path in the Set up this installation field, and then click Next.

1. 

Choose PHP INI Path:

Next, choose the php.ini file to be copied and its destination directory. Subsequent changes to the
original file will not be available in the new copy. Modify the new file directly, or rerun the
wizard to copy the changes. Click Next.

On Windows, the php.ini file is generally located inc:\windows, or c:\winnt,
depending on your operating system. It may also be located in the same directory as your
php.exe executable.

♦ 

On Linux, the default location is/usr/local/lib. It may also be located in the same
directory as your PHP executable.

♦ 

2. 

Choose PHP Extension Directory:

Many PHP installations already include a default "extensions" directory. This is where the
debugger extension should be installed. If you have specified an extensions directory in the .ini
file, you do not need to change the path that appears in the Use this extensions directory field. It
is important that the extensions are installed in the same directory as your PHP installation. If
you choose a different location, some extensions may not work. Once the desired path is set,
click Next.

3. 

Ready to Install:

The final window in the wizard displays the installation options. Confirm that the selections are
correct and click Next. To change any of the selections, click Back.

4. 

Starting and Stopping a PHP Local Debugging Session

To step through the script, from Debug menu, select Step In or press 'F11'.

To run the script to the first breakpoint, from the Debug menu, select Go/Continue or press 'F5'.

To stop the debugger, from the Debug menu, select Stop, or press 'Shift+F5'.

See Komodo Debugger Functions for full instructions on using Komodo's debugging functionality.

Debugging PHP 139/437



Remote PHP Debugging

Remote PHP debugging encompases all types of PHP debugging not initiated from within Komodo,
including debugging PHP scripts running under a local web server.

When a PHP script is run through a web browser, the web server uses the PHP interpreter to execute the
script. If PHP is configured for remote debugging, the server contacts Komodo to start a debugging
session. Komodo controls the debugging (e.g. stepping and breakpoints) once the session starts. CGI
variables are available, as are all other variables that are available when running PHP under a web server.

Though remote PHP debugging allows PHP scripts to be run in their true environment, it may be slower
than local PHP debugging.

Configuring Remote PHP Debugging

Remote debugging of PHP in Komodo is set up differently depending on how many people will be
debugging scripts on the same web server:

Single User Remote PHP Debugging: In single user remote debugging, PHP is configured to always
look for a specific instance of Komodo on a specific machine. This configuration requires no changes to
the PHP script. Your web server and your instance of Komodo can be on one machine or two machines

Multi−User Remote PHP Debugging: When multiple users need to debug PHP scripts on a single web
server, use the DBGP Proxy with the remote PHP debugging instructions below. While it is possible to
configure Apache with Virtual Hosting, it is easier to configure multi−user remote PHP debugging with
the proxy.

Remote PHP debugging must be configured manually. The following procedure assumes that you have
already installed PHP.

Step 1 − Copy the Debugging Extension to the Web Server

Before debugging PHP scripts in Komodo, PHP must be configured to use the Xdebug extension
(php_xdebug.dll or xdebug.so).

Manually copyxdebug.so (Unix) or php_xdebug.dll (Windows) into a directory on the server
that the PHP interpreter and web server can access. We recommend installing Xdebug in the existing
PHP extensions directory on the web server (specified by theextension_dir variable in the php.ini
file). These Xdebug files can be found in the php/debugging/<PHP version> sub−directory of the
Komodo installation or downloaded from the Komodo Remote Debugging page.

If you are installing PHP for the first time, theextension_dir may be set to "./". You should change
this to a full, direct path, such asC:\php\extensions under Windows, or
/usr/local/lib/php/extensions under Linux.

Windows

Debugging PHP 140/437

http://www.xdebug.org
http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging


File required:php_xdebug.dll• 
Source location:
<komodo−install−directory>\php\debugging\<PHP−version> or the Komodo
Remote Debugging page.

• 

Destination: theextension_dir directory as defined in the php.ini file.• 

Linux

File required:xdebug.so• 
Source location:
<komodo−install−directory>/php/debugging/<PHP−version>/

• 

Destination: theextension_dir directory as defined in the php.ini file.• 

Step 2 − Edit the Web Server's PHP Configuration

Windows

Open the php.ini configuration file on the web server. In the "Dynamic Extension" section, add the
following lines:

        ; xdebug config for Windows
        zend_extension_ts=c:\path\to\php_xdebug.dll
        xdebug.remote_enable=1
        xdebug.remote_handler=dbgp
        xdebug.remote_mode=req
        xdebug.remote_port=9000
        xdebug.idekey=<idekey>

Note: The php.ini configuration file should be in your operating system directory (e.g. C:\WINDOWS or
C:\WINNT), or in the same directory asphp.exe (e.g. C:\PHP). If you used the PHP Windows
installer, this file should be in the correct location.

Linux

Open the php.ini configuration file on the web server. In the "Dynamic Extension" section, add the
following lines:

        ; xdebug config for Linux
        zend_extension=/path/to/xdebug.so
        xdebug.remote_enable=1 
        xdebug.remote_handler=dbgp
        xdebug.remote_mode=req
        xdebug.remote_port=9000
        xdebug.idekey=<idekey>

Set the "remote_port" to the same value as the debugging listener port configured in
Edit|Preferences|Debugger.

Once the php.ini file is updated, verify that Xdebug is configured by running the following command:

Debugging PHP 141/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging
http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging


    php −m

Lists of all PHP and Zend modules are displayed. Make sure Xdebug appears in both lists.

Note: Recent versions of PHP are set to buffer program output by default. While debugging, it is useful
to disable output buffering so that results ofprint and echo statements can be seen immediately when
stepping through code. To disable output buffering, comment out theoutput_buffering setting in
php.ini with a ";" character, or set it to "off".

Starting and Stopping a PHP Remote Debugging Session

Once remote PHP debugging is configured, the PHP interpreter can contact Komodo and initiate a
remote debugging session when a PHP script is executed on the web server.

To debug a PHP script using a web browser:

Ensure you have configured PHP for your web server, have it properly working, and have
configured PHP and Komodo as described in Configuring Remote PHP Debugging.

1. 

On the Debug menu, click Listen for Remote Debugger.2. 
Open your web browser and access the script you want to debug. Append
"?XDEBUG_SESSION_START=<idekey>" to the end of the URL as a GET argument. The IDE
Key should match the Proxy Key value shown in Debug|Listener Status. For example:

  http://example.org/sample.php?XDEBUG_SESSION_START=jdoe

Note: This is only required for the first request. After that, Xdebug tracks the debugging session
with a cookie. For more information on how this works, see
www.xdebug.org/docs−debugger.php#browser_session

3. 

A PHP debugging session starts in Komodo. Use 'F11' to Step In, or 'F5' (Go) to run to the first
breakpoint.

4. 

To debug a PHP script remotely from the command line:

From the Debug menu, click Listen for Remote Debugger.1. 
Set the XDEBUG_CONFIG environment variable. Use the port specified in
Edit|Preferences|Debugger or listed in Debug|Listener Status.

On Windows:

  set XDEBUG_CONFIG=remote_port=9000 remote_enable=1

On Linux (using the bash shell):

  export XDEBUG_CONFIG="remote_port=9000 remote_enable=1"

2. 

Run the script using the PHP interpreter:3. 

Debugging PHP 142/437

http://www.xdebug.org/docs-debugger.php#browser_session


  php −f sample.php

A PHP debugging session will start in Komodo. Click Step In ('F11') to start stepping through
the script or Go ('F5') to run to the first breakpoint.

4. 

To debug a PHP script remotely using the DBGP Proxy:

From the Debug menu, select Listen for Remote Debugger.1. 
Set the XDEBUG_CONFIG environment variable as above. Use the port specified in
Edit|Preferences|Debugger or listed in Debug|Listener Status. Add an IDE Key value to the
XDEBUG_CONFIG environment variable that matches the Proxy Key value shown in
Debug|Listener Status.

On Windows:

  set XDEBUG_CONFIG=remote_port=9000 remote_enable=1 idekey=<USERNAME>

On Linux (using the bash shell):

  export XDEBUG_CONFIG="remote_port=9000 remote_enable=1 idekey=<USER>"

2. 

Run the script using the PHP interpreter:

  php −f sample.php

3. 

A PHP debugging session will start in Komodo. Click Step In ('F11') to start stepping through
the script or Go ('F5') to run to the first breakpoint.

4. 

Output from the debug session appears in the Bottom Pane of the Komodo Workspace. Komodo does not
support a console for remote debugging. The browser will not show the script output until debugging is
complete.

To stop the debugger:

From the Debug menu, select Stop
or

• 

Press 'Shift+F5'• 

See Komodo Debugger Functions for full instructions on using Komodo's debugging functionality.

If you receive an error message while debugging a PHP script that is not caused by the errors in the script
itself, check the PHP troubleshooting section of the Komodo FAQ.

Using xdebug_break()

Thexdebug_break() function is used to hard−code a break in a PHP program. It can be used instead
of a Komodo breakpoint. For example:

Debugging PHP 143/437



        <?php
        echo "<p>Breaks after this line.</p>";
        xdebug_break();
        echo "<p>Breaks before this line.<p>";
        ?>

This function breaks the code during a debugging session but will not initiate a new session. Use
xdebug_break() in conjunction with the methods described above for starting debugging sessions.

Debugging PHP 144/437



Debugging Tcl
Komodo can be used to debug Tcl programs locally or remotely. The
following instructions describe how to configure Tcl debugging. For general
information about using the Komodo debugger, see Komodo Debugger
Functions.

Tutorial

Tcl Tutorial• 

Configuring Local Tcl Debugging

Specify the Tcl interpreter Komodo uses to debug and run Tcl programs:

On the Edit menu, select Preferences.1. 
In the Preferences dialog box under Languages, click Tcl. Komodo searches for Tcl interpreters
in the systemPATH and lists alltclsh and wish interpreters available in separate drop−down
lists. If no Tcl interpreters are displayed in the list, check that the location of the interpreters is
specified in yourPATH environment variable.

2. 

If the preferred interpreters are in these lists, click to select them. If they are not, click Browse to
locate them.

3. 

Click OK.4. 

To start a local Tcl debugging session, click Go/Continue (F5) or Step In (F11) in the Debugger menu or
toolbar. See Komodo Debugger Functions for full instructions on using Komodo's debugging
functionality.

Remote Tcl Debugging

When debugging a Tcl program remotely, the program is executed on the remote machine and the debug
output is sent to Komodo. Komodo controls the debugging session (e.g. stepping, breakpoints, and
spawnpoints) once the session has been started on the remote machine.

Installing the Tcl Debugger Application on a Remote Machine

To debug a Tcl program remotely, the Tcl debugger application, dbgp_tcldebug.exe (Windows) or
dbgp_tcldebug (Linux), must be installed on the remote machine. This file is installed with Komodo in
the tcl sub−directory of the Komodo installation directory and is also available for download from the
Komodo Remote Debugging page.

To install the Tcl debugger application on the remote machine:

If necessary, install a Komodo license.• 
Copy the dbgp_tcldebug executable to any convenient directory.• 

Debugging Tcl 145/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging
http://www.activestate.com/Support/General/Licensing_FAQ.plex#how_install


Invoking the Tcl Debugger Application

To debug a Tcl script on a remote machine:

In Komodo, select Listen for Remote Debugger... from the Debug menu.1. 
Log in to the remote machine.2. 
On the remote machine, run the dbgp_tcldebug executable from the command line.

  dbgp_tcldebug −dbgp <komodo_host:port>
          −app−file <tcl_program>
          −app−shell </path/to/tclsh_or_wish>

The following options are available:

−dbgp: Sets the hostname (or IP address) and port where Komodo or the DBGP Proxy is
running. In Komodo, select Debug|Listener Status to check the current port setting.

♦ 

−app−file: Specifies the Tcl program to debug. Program arguments should follow a "−−"
delimiter after the Tcl program name (e.g.... −app−file test.tcl −− arg_0
arg_1).

♦ 

−app−shell: Sets the path to the Tcl interpreter (tclsh orwish).♦ 
−help: Displays a complete list of options.♦ 

3. 

A Tcl Debug tab opens in Komodo. Use F11 to Step In, or F5 (Go/Continue) to run to the first
breakpoint (see Komodo Debugger Functions for full instructions).

4. 

Example

Remote Machine (Windows):

The file dbgp_tcldebug.exe has been copied into theC:\remote_debug directory.• 
The Tcl file to be debugged is calledtest.tcl and is located in the current working directory.• 
The Tcl interpreter isC:\Tcl\bin\wish.exe.• 

Local Machine:

The hostname is "mybox".• 
The Komodo remote debugging listener port is set to 9000.• 

In this scenario, the following command is entered on the remote machine:

  C:\remote_debug\dbgp_tcldebug.exe −dbgp mybox:9000
          −app−file test.tcl −app−shell C:\Tcl\bin\wish.exe

Debugging Tcl 146/437



Debugging XSLT
Komodo does not need to be manually configured for local XSLT debugging.
It uses the libxslt and libxml libraries directly to transform XML documents
into HTML, text, or other XML document types. See www.libxml.org for
more information on this XML C parser and toolkit.

For general information about debugging with Komodo, see General
Debugger Functions.

Tutorial

XSLT Tutorial• 

Using the XSLT Debugger

To debug an XSLT file:

Open the XSLT file and set breakpoints.1. 
Start the debugger by clicking Go/Continue (F5) or Step In (F11) in the Debug Toolbar.2. 
In the Debugging Options dialog, Select the input XML file3. 
Click OK to start the debugger.4. 

The XSLT program, the input XML file, and the results of the transformation appear simultaneously. By
default, Komodo splits the Editor pane horizontally.

The XSLT program continues to appear in the top tab group.• 
The XML input file appears in a new tab below the XSLT program.• 
The results of the transformation are displayed in the Output tab.• 

A yellow arrow on the breakpoint margin shows the current line of execution in both the XSLT and
XML file. Breakpoints can be set in the both files before starting the debugging session, or while
stepping through the code.

Using a Remote XML Input File

To debug using an XML file on a remote server, enter the full URL to the file in the Select the input
XML file field (for example, http://www.example.org/input_file.xml).

XSLT Stepping Behavior

Stepping behavior in the XSLT file is similar to the standard stepping behavior described in Debugger
Stepping Behavior, but the terminology for describing XSLT is slightly different than that used for
scripting languages.

Step In: Executes the current XSL element or template line and pauses at the following line.• 
Step Over: Not applicable. Behaves the same as Step In.• 

Debugging XSLT 147/437

http://www.libxml.org


Step Out: When the debugger is within an XSL element, Step Out will execute the entire block
without stepping through the code line by line. The debugger will stop on the line following the
closing tag of the element.

• 

Though the current line is highlighted in both the XSLT and XML files, the stepping behavior is only
applicable to the XSLT file.

Debugging XSLT 148/437



Interactive Shell

Komodo's interactive shell implements individual language shells within
Komodo. Shells are used to directly communicate with the specified language
interpreter. Statements, expressions, and code fragments can be entered
independent of program files. The shell can be used as a stand−alone
interactive tool or as a shell that interacts from within a debugging session.

Tutorial

Python Tutorial• 
Feature Showcase

interactive shell• 

Stand−Alone Interactive Shell

When the interactive shell is started as a stand−alone tool, use the shell to help test modules and
experiment with new languages or programs. Other uses for a stand−alone interactive shell include:

prototyping code• 
identifying bugs• 
experimenting with a library• 
programming interactively• 
learning new syntax• 

The interactive shell supports history recall, AutoComplete and CallTips (Tcl only), and custom colors
and fonts.

Debugging with an Interactive Shell

When the interactive shell is started from within a debug session, use the shell to access all functions and
code being debugged. When the shell is closed from within a debug session, continue the debug process
where you left off. Depending on the language used, changes made in the shell remain in effect for the
duration of the debug session. Other uses for an interactive shell within a debug session include:

exploring and debugging a program• 
adding new code to the program being debugged (language−dependent)• 
modifying existing variables using complex expressions• 
adding new variables with code• 

The interactive shell supports history recall, AutoComplete and CallTips (Tcl only), and custom colors
and fonts.

Interactive Shell 149/437



Using the Interactive Shell

Each Komodo interactive shell is associated with a corresponding interpreter and is thus
language−specific. Each time a command or multi−line string is entered into the Shell tab, that code is
sent to the corresponding interpreter for evaluation. The interpreter evaluates the command, and then
returns output and error text.

Setting Shell Preferences

Use the Preferences dialog box to specify the default language to use within an interactive shell. Other
shells can still be accessed via Tools|Interactive Shell.

To set the default shell preference:

On the Tools menu, select Interactive Shell|Configure1. 
On the Preferred Interactive Shell drop−down list, select the desired language (Python, Perl,
Tcl).

2. 

Click OK.3. 

Starting the Interactive Shell

The interactive shell can be opened as a stand−alone tool or as a shell inside of a debugging session.

To start the shell as a stand−alone tool:

Select Tools|Interactive Shell, and then select the desired language (Python Shell, Tcl Shell, Perl
Shell). Alternatively, click the Shell button on the Workspace toolbar.

• 

The interactive shell opens in a Shell tab in the Bottom Pane beside the Command Output and
Breakpoint tabs.

To start the shell from within a debug session:

On the active Debug tab, click the >> button on the Debug toolbar, or select Debug|Interact. The
Debug tab toggles to a Shell tab. Enter code as desired. To toggle back to the Debug tab, click
the >> button on the Debug Toolbar.

• 

View debugging and code inspection functions by clicking the "Collapse/Expand Pane" button at the left
side of the Bottom Pane. This splits the shell into a left and right pane. The left pane performs debugging
functions while the right pane contains the interactive shell.

Interactive Shell 150/437



Using Multiple Shells

Open multiple interactive shells to interact with various code snippets from a single language or use
many shells to simultaneously explore a different language in each shell.

Using AutoComplete and CallTips

The Tcl interactive shell displays AutoComplete and CallTips when recognized code and commands are
entered into the shell. Use AutoComplete and CallTips to limit the amount of typing in each session. To
select a suggested item, press Enter. Use the up and down arrow keys to scroll through the various
options on the screen. To cancel or ignore the suggested AutoComplete or CallTip, press Esc.

Komodo can also detect when further data is required at the command prompt. When insufficient
programming data is entered at the prompt, Komodo displays a language−dependent "more" prompt.
This prompt indicates that the language interpreter requires more information before the code can run.
Once enough data is entered, Komodo executes the code and the standard language−dependent input
prompt returns.

Customizing Colors and Fonts

The Shell tab displays commands, variables, error messages, and all language syntax in the same scheme
as specified in Edit|Preferences|Fonts and Colors. See Customizing Fonts and Colors for more
information.

Viewing Shell History

The code history consists of the ordered, numbered sets of commands entered in the lifetime of the shell,
including interleaved output and error messages. Use the up and down arrow keys to cycle through the
history of all entered commands. When viewing a multi−line command or function, use the 'Enter' key to
select the desired function and then use the arrow keys to cycle through the multiple lines within that
function.

Stopping a Shell Session

To stop an interactive shell session and close the Shell tab, click the X button located in the upper−right
corner of the Shell tab. To stop the interactive shell and keep the Shell tab open, click the square button,
or use the associated key binding.

Interactive Shell 151/437



Clearing the Shell Buffer

To clear the shell buffer, click the Clear Buffer button. There is no limit to buffer size; unless it is
manually cleared, the buffer will continue to increment until the interactive shell session is closed.
Manually clearing the buffer only removes the command history and command results, and has no effect
on the buffer state (such as changes to the working directory, etc).

Using the Python Interactive Shell

The Python shell prompt is a group of three angle brackets >>>. A ... prompt is displayed if Komodo
determines that more information is required before the code can execute. A prompt is displayed
when input fromstdin is required (for example, in a Python shell, enterhelp()). No prompt is
displayed when program output is sent to the screen. Code errors are displayed in italics. When a Python
interactive shell session begins, a welcome message is printed stating a version number and copyright
notice. The first prompt is printed as follows:

Python 2.2.2 (#37, Nov 25 2002, 13:15:27) [MSC 32 bit (Intel)] on win32
Type "copyright", "credits" or "license" for more information.
>>>

The following example shows a series of Python statements with resulting output:

>>> # Comment: my hello world test
>>> print "Hello World"
Hello World
>>> x=12**2
>>> x/2
72
>>>

Debugging with the Python Shell

To start a Python shell from within a debug session, click the Interact button, located in the

upper−right corner of the Debug tab. Starting a shell within a debug session enables Interact Mode. In
Interact Mode, view debugging and code inspection functions by clicking the "Collapse/Expand Pane"
button at the left side of the Bottom Pane. This splits the shell into a left and right pane. The left pane
performs debugging functions while the right pane contains the interactive shell. In Interact Mode,
debugging functionality (for example, Run, Step In, Step Out) is not available. To return to the debugger,
click the Interact button again to exit Interact Mode.

Interactive Shell 152/437



Using the Tcl Interactive Shell

The Tcl interactive shell supports the tclsh interpreter. The Tcl shell prompt is a percent character %. A >
prompt is displayed if Komodo determines that more information is required before the code executes. A

 prompt is displayed when input fromstdin is required. No prompt is displayed when program
output is sent to the screen. Code errors are displayed in italics. The following examples show how input,
output, and errors are displayed in the Tcl shell:

%puts "Hello World"
Hello World
%

%put "hello world"
invalid command name "put"
%puts "hello world"
hello world
%

Debugging with the Tcl Shell

To start a Tcl shell from within a debug session, click the Interact button, located in the upper−right

corner of the Debug tab. Starting a shell within a debug session enables Interact Mode. In Interact Mode,
view debugging and code inspection functions by clicking the "Collapse/Expand Pane" button at the left
side of the Bottom Pane. This splits the shell into a left and right pane. The left pane performs debugging
functions while the right pane contains the interactive shell. In Interact Mode, debugging functionality
(for example, Run, Step In, Step Out) is not available. To return to the debugger, click the Interact button
again to exit Interact Mode.

Using the Perl Interactive Shell

The Perl interactive shell prompt is a percent character %. A > prompt is displayed if Komodo
determines that more information is required before the code executes. No prompt is displayed when
program output is sent to the screen. Code errors are displayed in italics. The following examples show
how input, output, and errors are displayed in the Perl shell:

%print "Hello World! \n";
Hello World!
%

Interactive Shell 153/437



%prin "Hello World! \n";
syntax error
%print "Hello World!!! \n";
Hello World!!!
%

Using Strings, Function Definitions, and Multiple Line Input

Use the Perl shell to enter function definitions, long strings, and specifyif and while blocks
interactively. The Perl shell also handles multiple line input delimited by braces, curly braces, single
quotes, and double quotes. The following examples demonstrate this usage.

Example: Using single quotes "''" to enter multiple line input.

% $b = 'abc
> def
> ghi
> jkl'
abc
def
ghi
jkl
%

Example: Using curly braces "{}" to define a function and enter multiple line input.

% sub foo {
> my $arg = shift;
> my $arg2 = shift;
> return $arg + $arg2;
> }
% foo(10, 12)
22
%

Example: Using braces to enter a multiple line string.

% $name = 'Bob'
Bob
% print qq(<html><head><title>
> Browser Window Caption Text
> </title></head><body bg="white">
> <p>Welcome to my fine web site, $name
> </body>
> </html>)
<html><head><title>
Browser Window Caption Text

Interactive Shell 154/437



</title></head><body bg="white">
<p>Welcome to my fine web site, Bob
</body>
</html>
%

Example: Using a backslash to continue a statement.

% print 'abc ', 'def ', \
> 'ghi'
abc def ghi
%

Example: Using a backslash to continue a statement.

% $first_long_variable_name = 3
3
% $second_long_variable_name = 4
4
% $third_long_variable_name_to_store_result =
$first_long_variable_name + \
> $second_long_variable_name
7

Example: Using a braced construct

% foreach $var (sort keys %ENV) {
> print "$var = $ENV{$var}\n";
> }
ALLUSERSPROFILE = C:\Documents and Settings\All Users
COMMONPROGRAMFILES = C:\Program Files\Common Files
COMSPEC = C:\winnt\system32\cmd.exe
KOMODO_VERSION = 3.0.0−beta2
LESS = −−quit−at−eof −−quit−if−one−screen −−ignore−case
−−status−column −−hilite−unread −−no−init
MSDEVDIR = C:\PROGRA~1\MICROS~3\Common\msdev98
MSVCDIR = C:\PROGRA~1\MICROS~3\VC98
NETSAMPLEPATH = C:\PROGRA~1\MICROS~1.NET\FRAMEW~1\Samples
OS = Windows_NT
OS2LIBPATH = C:\winnt\system32\os2\dll;
PATH = C:\PROGRA~1\MICROS~3\Common\msdev98\BIN;
PROCESSOR_ARCHITECTURE = x86
PROCESSOR_IDENTIFIER = x86 Family 6 Model 7 Stepping 3, GenuineIntel
PROCESSOR_LEVEL = 6
PROCESSOR_REVISION = 0703
PROGRAMFILES = C:\Program Files
PROMPT = $P$G

Interactive Shell 155/437



SYSTEMDRIVE = C:
SYSTEMROOT = C:\winnt
TEMP = C:\DOCUME~1\toto\LOCALS~1\Temp
TMP = C:\DOCUME~1\toto\LOCALS~1\Temp
USERNAME = toto
USERPROFILE = C:\Documents and Settings\toto
WINDIR = C:\winnt

Debugging with the Perl Shell

To start a Perl shell from within a debug session, click the Interact button, located in the upper−right

corner of the Debug tab. Starting a shell within a debug session enables Interact Mode. In Interact Mode,
view debugging and code inspection functions by clicking the "Collapse/Expand Pane" button at the left
side of the Bottom Pane. This splits the shell into a left and right pane. The left pane performs debugging
functions while the right pane contains the interactive shell. In Interact Mode, debugging functionality
(for example, Run, Step In, Step Out) is not available. To return to the debugger, click the Interact button
again to exit Interact Mode.

Interactive Shell 156/437



Code Intelligence
Komodo's Code Intelligence system is a set of tools that make browsing,
searching, and programming complex code easier and more accessible. Use
Code Intelligence functionality to view the hierarchical code structure within
a program file or project, search for language−specific code constructs (for
example, variables, methods, imports), and easily preview and open
associated source files in the editor. Code Intelligence supports programming
in Python, Perl, Tcl, PHP, and JavaScript. Code Intelligence is comprised of
the following tools:

Code Browser: A tab that displays a hierarchical view of all code
constructs (for example, variables, methods, imports) in all open files.
In the Code Browser, symbols can be sorted and filtered; the current
scope of a symbol can be located. The lower part of the Code Browser
provides additional documentation (when available) on various
program components. To access the Code Browser, click
View|Tab|Code Browser. The Code Browser is displayed on the Code
tab beside the Projects tab.

• 

Object Browser: A graphical browser that searches the Code
Intelligence database for specified code symbols and modules. Use
the Preview Pane to view code snippets containing the search criteria.
To open the Object Browser, select Tools|Object Browser.

• 

Python AutoComplete and CallTips: The Code Intelligence system
provides AutoComplete and CallTips when programming in Python.
Python AutoComplete and CallTips require a Code Intelligence
database. See Building the Code Intelligence Database for more
information. Note that other languages do not require the Code
Intelligence database for AutoComplete and CallTips.

• 

All Code Intelligence tools require a database to operate fully. See Building
the Code Intelligence Database for more information. The Python Tutorial
demonstrates the Code Browser and other Code Intelligence tools. See the
Python Tutorial to explore a Python program in Komodo.

Feature Showcases

view help using
the code
browser

• 

find components
using the object
browser

• 

view scope• 

Building the Code Intelligence Database

Before using Komodo Code Intelligence tools, you must populate the Code Intelligence database. The
Code Intelligence database contains the information regarding code constructs in source files and
language installations. Information in the database is used by the Code Browser, Object Browser, and
Python AutoComplete and CallTips. Komodo automatically updates the database as files are opened in
Komodo. However, in order to use the Object Browser to view constructs in files that have not been

Code Intelligence 157/437



opened, use the following wizards: Scan language installations and Scan custom directories. To build
the database to include all desired language installations, run the Scan language installations wizard
(located under Edit|Preferences|Code Intelligence).

If you use custom directories to store code components (functions, modules, etc.) outside of a language
installation, run the Scan custom directories wizard (located under Edit|Preferences|Code Intelligence)
to configure the Code Intelligence database.

See Code Intelligence Preferences for more information on building a database.

Code Browser

Use the Code Browser to view the general program structure of all source files open in the editor. For
each source file, the Code Browser displays a tree of symbol nodes, including: modules, classes,
functions, interfaces, namespaces, imports and variables. In Python, instance attributes are also
displayed. Each node in the tree hierarchy can be expanded to display further detail, acting as an index to
your source code. Symbols can be sorted, filtered, and the current scope of a symbol can be located. The
lower part of the Code Browser displays code descriptions (when available) on various program
components. The Code Browser supports the following languages: Python, Perl, PHP, Tcl and
JavaScript.

Code Intelligence 158/437



Use the Code Browser to:

View program structure.• 
Browse from a listed namespace, command, or variable definition and jump to the actual source
code where it is declared.

• 

Locate all variables used within a file.• 
View a symbol definition signature.• 
Find all defined symbols matching a pattern.• 

Context Menu

Right−click in the Code Browser Pane to access code searching options. The following options are
available:

Go to Definition: Jumps to the definition of the associated symbol in the editor. Alternatively,
double−click the symbol name in the Code Browser tree.

• 

Find Symbol: Right−click on a symbol name to search for matching symbols in the Object
Browser.

• 

Copy: Copies the symbol name to the clipboard.• 
Sort By File Order: Sorts all symbols in the tree by file order.• 
Sort Alphabetically: Sorts all symbols in the tree alphabetically.• 

Code Intelligence 159/437



Sorting

Use the Sort By  button to organize all Code Browser symbols by file order or alphabetically. To

sort all symbols by file order, click Sort By, and then select Sort By File Order from the drop−down list.
To sort all symbols alphabetically, click Sort By, and then select Sort Alphabetically from the
drop−down list. Alternatively, use the context menu (right−click in the Code Brower) to access sorting
options.

Locating Current Scope

Use the Locate Current Scope  button to find the scope of a symbol (for example, namespace,

command, or variable definition). To view the scope of a symbol, place the cursor on the desired symbol
in the source code and then click the Locate Current Scope button. The Code Browser tree opens to the
associated scope. Alternatively, click Code|Locate Current Scope in Code Browser to open the Code
Browser tree to the associated scope.

Using the Scope Indicator

The Komodo status bar displays a Scope Indicator when a file written in a supported language is open in
the Editor Pane. Place the cursor over the Scope Indicator to display the current scope name and type
(class, function, etc). Double−click the Scope Indicator to open the Code Browser and locate the current
scope within the tree hierarchy.

Filtering Symbols

The Filter Symbols  text box limits the Code Browser display to matching symbols.

To filter symbols in the Code Browser, enter the desired symbol name, or partial name, in the text box.
Press 'Tab' to switch focus between the Filter text box and the Code Browser tree. Press 'Esc' to clear the
current filter pattern.

Viewing Code Descriptions

Use the Code Description pane to view additional information on a method, class, variable, etc. Code
documentation is only displayed when the documentation itself is included within the source file. To
open the Code Description pane, click the Show/Hide Description  button, located at the
bottom of the Code Browser. To view code descriptions, select the desired symbol in the Code Browser
tree hierarchy.

Code Intelligence 160/437



The Code Description pane displays the following information, when available:

Filename where the symbol exists.• 
Line number where the symbol is declared.• 
Name of the symbol.• 
Internal documentation, if available (for example, Python docstrings).• 
Symbol declaration signature.• 

Code Description limitations:

There are limitations in how the Code Intelligence system matches internal documentation to declared
symbols. These limitations only affect whether associated documentation is shown in the Code Browser's
Description pane. Specifically, nearby comments are typically not associated with declarations (function,
variable, class, etc). Further, POD documentation in Perl files is not mapped to associated modules and
subs. However, the following properly display in the Code Description pane: PHP block comments
immediately preceding classes and functions, and Python modules, classes, and def docstrings.

Object Browser

The Object Browser is a graphical browsing tool that searches the Code Intelligence database for
specified code symbols and modules. To open the Object Browser, select Tools|Object Browser.
Alternatively, invoke the Object Browser from the Code Browser context menu.

Code Intelligence 161/437



When searching source files by symbol, module, or a combination of both, the Matches pane displays a
tree of symbol nodes that outline the general program structure of found search criteria. Each node in the
tree hierarchy can be expanded to display further detail. Select a node to view the symbol code in the
Preview pane. Double−clicking a symbol opens the file in the editor at the position where that symbol is
declared.

Searching

Search by symbol, module or a combination of both to locate all instances where a component is used.

To search:

In the Symbol text box, enter the desired name to search. Leave blank to just search for modules.1. 
In the Module text box, enter the desired name to search. Leave blank to search all modules.2. 
Select Exact match to find the literal symbol and/or module name in the Code Intelligence
database.

3. 

Code Intelligence 162/437



Select Show imports to includeimport, use, and include statements in the results.4. 
In the Search drop−down list, select the desired language type. Note that only those language
installations scanned into the Code Intelligence database can be selected. To scan a language
installation in the Code Intelligence database, see Building the Code Intelligence Database for
more information.

5. 

Click Go.6. 

Alternatively, select the desired symbol or module in the Editor Pane, and then click Code|Find Symbol
in Object Browser. The Object Browser is invoked (if not already launched) and displays the search
results for the selected symbol or module.

Use the Matches pane to sort the symbols that match the search criteria. Sorting options are:

Name• 
Type• 
Module• 
File Path• 
Line• 

Code Intelligence 163/437



Source Code Control (Komodo Pro)
"Source code control" refers to the practice of storing files containing program source code (and other
project artifacts) in a common repository. Using source code control (SCC), multiple developers can
work on the same project (including the same project file) at the same time. The SCC repository can be
queried for a detailed listing of the changes that occurred each time a file was edited. Files under source
code control that are open for editing can also be reverted to their previous state.

Komodo's SCC integration works in conjunction with the CVS and Perforce source code control systems.
From within Komodo, you can perform the following SCC actions:

check files out of the repository• 
add files to the repository• 
remove files from the repository• 
compare files in the editor against their repository versions (a "diff")• 
submit files back to the repository• 
revert files to their previous state• 

Depots, repositories, branches, and projects cannot be created or configured from within Komodo. This
must be done using CVS or Perforce directly.

Source code control functions are accessible from the following locations:

Toolbox Context Menu: Right−click a file in the Toolbox to access the Source Control menu
options. Source code control functions can also be performed on Folders in the Toolbox;
right−click a folder and select Source Control on Contents to access the menu.

• 

Project Manager context menu: Right−click a file in the Project Manager to access the Source
Control menu options. SCC functions can also be performed on Folders in the Toolbox;
right−click a folder and select Source Control on Contents to access the menu. Two source code
control options are available from the Project Manager and Toolbox context menus:

Source Control applies source code functions to the selected file only.♦ 
Source Control on Contents applies source code functions to the contents of the selected
project or folder.

♦ 

• 

Editor Pane: Right−click a file in the Editor Pane to access the Source Control menu options.• 
Filename Tab: Right−click the filename tab above the Editor Pane to access the Source Control
menu options.

• 

File Menu: Select the Source Control option from the File menu.• 

The Source Control submenu options are the same regardless of which method is used to access the
menu.

Configuring Source Code Control Integration

Source Code Control (Komodo Pro) 164/437

http://www.cvshome.org/
http://www.perforce.com/


Configuring CVS

Installing the CVS Executable

To view the location of the CVS executable files found on your system and to determine which
executable is used, select Edit|Preferences|Source Code Control|CVS. If CVS is not properly
configured, or if the CVS executable file you have is incompatible with Komodo, the CVS Source Code
Control page in Komodo Preferences displays a message advising that CVS integration is disabled. To
begin configuring CVS, click Download CVS and follow the instructions on the ASPN web site.

On Windows, determine the version of cvs.exe installed on your system by enteringcvs −v at a
command prompt. If this returnsConcurrent Versions System (CVSNT) rather than
Concurrent Versions System (CVS), your CVS version is not compatible with Komodo.
Linux uses the standard version of CVS.

The CVS executable must be located in a directory specified in your system's PATH environment
variable.

On Windows 98 and Me, you must configure aHOME environment variable, for example "HOME=c:\".
Reboot before proceeding.

CVS Over SSH

Some CVS repositories (e.g. SourceForge) will only support CVS access over SSH (secure shell). When
accessing these repositories, an SSH client is required.

Installing and Configuring Putty on Windows

Putty is a free SSH, Telnet and Rlogin client for Windows.

1. Install Putty

Download Putty (version 0.52 or greater) and associated programs from:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

To connect to a CVS server via SSH, the following programs are required:

putty.exe• 
puttygen.exe• 
pageant.exe• 
pscp.exe• 
plink.exe• 

Source Code Control (Komodo Pro) 165/437

http://www.sourceforge.net
http://www.chiark.greenend.org.uk/~sgtatham/putty/


Ensure that the directory where Putty is installed is specified in your system'sPATH environment
variable.

2. Generate the Putty Key

Run theputtygen utility. Configure as follows:

Set Parameters: Select either "SSH2 RSA" or "SSH2 DSA".1. 
Generate Key Pair: Click the Generate button to generate the key pair. While the key is being
generated, move the mouse pointer around the blank space to provide key randomness.

2. 

Enter Key Passphrase: Enter and confirm a passphrase for the key. Remember the passphrase −
it is required later.

3. 

Save Public Key: Click the "Save public key" button and store the key in a file called
public1.key.

4. 

Save Private Key: Click the Save private key button and store the key in a file called
private1.key, in the same directory as the public key.

5. 

Copy Key Contents: Copy the contents of the public key field (at the top of the dialog box) to a
file named public1−openssh.key. This key is required later.

6. 

Close puttygen7. 

3. Load and Configure the Putty Authentication Agent

Run thepageant program. This loads the Putty Authentication Agent into the Windows System Tray.

Right−click the Pageant icon in the Windows System Tray. Select Add Key. Navigate to the directory
where you saved the public and private keys in the previous step, and select the file private1.key.

4. Configure Putty To Use Pageant

Run theputty program. Configure as follows:

Specify CVS Server: On the Session page of the Configuration form, enter the host name or IP
address of the CVS server.

1. 

Specify Protocol: On the Session page, in the Protocol field, select the "SSH" protocol.2. 
Create Saved Session: In the Saved Sessions field, enter the host name again. Click the Save
button.

3. 

Configure Connection: on the Connection page of the Configuration form, enter your username
for the CVS server in the Auto−login username field.

4. 

Configure SSH Protocol: On the SSH page of the Configuration form, specify "2" for the
Preferred SSH protocol version.

5. 

Enable Agent Forwarding: On the Auth page of the Configuration form, check Allow agent
forwarding. In the Private key file for authentication field, specify the path and filename of the
private key created above (private1.key).

6. 

Save Session Information: On the Session page of the Configuration form, click the Save
button.

7. 

5. Store Public Key on CVS Server

Source Code Control (Komodo Pro) 166/437



You must store the public key file generated in step 2 (public1−openssh.key) on the CVS server.

Open Command Prompt Window: Typecmd in the Windows Run dialog box.1. 
Copy Public Key to Server: At the command prompt, enter:

pscp c:\path\to\public1−openssh.key username@cvs.server.com:public1−openssh.key

...where c:\path\to\public1−openssh.key specifies the location of the key file created in step two,
and username@cvs.server.com specifies your user name on the CVS server and the URL of the
CVS server. You are prompted to confirm the legitimacy of the host, and may be prompted to
enter your password for the CVS server.

2. 

Connect Using Putty: If necessary, run theputty program. In the Saved Sessions field,
double−click the configuration created in Step 4. This establishes a connection to the CVS
server.

3. 

Configure the Key on the Server: After logging on to the CVS server, enter the following
commands to configure the SSH key:

    mkdir ~/.ssh
    chmod 700 .ssh
    cat ~/public1−openssh.key >> ~/.ssh/authorized_keys
    rm ~/public1−openssh.key
    chmod 600 ~/.ssh/*

4. 

Log Off and Exit Putty: Enterexit to close the session of the server.5. 

6. Test the Configuration

Restart Putty. In the Saved Sessions field, double−click the configuration created in Step 4. You should
not be prompted to log in. If you are, the configuration failed. Review the steps above and ensure that
they were completed correctly.

7. Check Out a CVS Module

Create Local CVS Directory: Create a directory to store a copy of the CVS repository.1. 
Copy Files to Local Directory: At a command prompt, enter:

    set CVS_RSH=plink
    set PLINK_PROTOCOL=ssh
    cvs −d :ext:username@cvs.server.com:/repository_name co cvs_module

...where username@cvs.server.com specifies your username on the CVS server and the URL of
the CVS server, repository_name specifies the name of the repository on the server, and
cvs_module specifies the name of the module in the chosen working repository.

Login is handled by SSH. The files are copied to the local system. These environment variables
do not interfere with non−SSH repositories.

2. 

Source Code Control (Komodo Pro) 167/437



Ensure that these variables are permanently configured in your system environment (for example, by
adding them to the autoexec.bat file or configuring them in the system properties). Reboot Windows Me
and 9x systems after adding environment variables.

8. Using Komodo and CVS

Before starting Komodo, perform the following steps:

Set PLINK_PROTOCOL=ssh: In the user environment, set the environment variable
PLINK_PROTOCOL to "ssh".

• 

Set CVS_RSH=plink: In the user environment, set the environment variableCVS_RSH to
"plink".

• 

(Windows 9x and Me only)Set HOME=C:\: On Windows 98 and Windows Me, configure the
HOME environment variable in the autoexec.bat file.

• 

Ensure Pageant Is Running: Run thepageant program to enable the authentication agent.
Ensure that the private1.key is loaded.

You can also execute Pageant and load the key via a batch file. For example:

    C:\PuTTY\pageant.exe c:\path\to\private.key c:\path\to\private2.key

• 

If you are running Windows 9x or Windows Me, permanently configure these variables in the
environment (for example, by adding them to the autoexec.bat file) and reboot before proceeding.

Configuring Windows/Cygwin−SSH or Linux/SSH

To configure CVS to use SSH, refer to
http://xml.apache.org/forrest/community/howto/cvs−ssh/howto−cvs−ssh.html.

On all platforms, create an environment variable as follows:

    CVS_RSH=ssh

CVS determines when to use SSH, depending on how you check out the modules. If you use the "cvs
login" method with the "pserver" protocol, CVS does not use SSH, even if CVS_RSH=ssh is set in the
environment.

On Windows, also configure the cygwin SSH Agent as follows:

Open a cygwin shell.1. 
Enterexec ssh−agent bash.2. 
Enterssh−add.3. 
To check out a CVS module, enter:

    cvs −d :ext:username@cvs.server.com:/repository_name co cvs_module

4. 

Source Code Control (Komodo Pro) 168/437

http://xml.apache.org/forrest/community/howto/cvs-ssh/howto-cvs-ssh.html


...where username@cvs.server.com specifies your username on the CVS server and the URL of
the CVS server, repository_name specifies the name of the repository on the server, and
cvs_module specifies the name of the module in the chosen working repository.
Start Komodo within the cygwin shell as follows:

/path/to/komodo/komodo.exe

5. 

After completing the configuration steps above, follow these steps to open Komodo with CVS−SSH
enabled:

Open a cygwin shell.1. 
Enterexec ssh−agent bash.2. 
Start Komodo within the cygwin shell as follows:

/path/to/komodo/komodo.exe

3. 

Configuring Perforce

Ensure that the command−line version of Perforce ("P4") is correctly installed and functional before
working with a Perforce repository within Komodo. Thep4.exe file must be located in a directory that
is specified in your PATH environment variable.

Users of Perforce's P4CONFIG feature may find that Komodo's source code control doesn't work unless
Komodo is started from within the client view of the Perforce repository.

Configuring Preferences

Use the Source Code Control page in Komodo's Preferences to configure Source Code Control
integration. To open the Komodo Preferences dialog box, select Edit|Preferences.

Using Source Code Control

SCC Toolbar, Menus and Output Tab

Source Code Control (Komodo Pro) 169/437



Source Code Control Toolbar

Access common source code control commands from the SCC Toolbar at the top of the Komodo
workspace. Refer to the command descriptions below for more information. The toolbar commands only
apply to the file currently active in the Editor Pane.

Source Code Control Menus

To access source code control functions, select File|Source Control.

Invoke source code control context menus by right−clicking files or folders in the following areas:

Project Manager• 
Toolbox• 
Editor Pane• 

Source Code Control Output Tab and Status Messages

The SCC Output tab is located in the Bottom Pane of the Komodo workspace. As you execute source
code control commands, such as editing or checking in files, details of the commands are displayed on
the SCC Output tab.

Error messages and warnings are also displayed on the SCC Output tab. Additionally, error messages
and warnings are displayed on the status bar in the bottom left corner of the Komodo workspace.

Source Code Control Commands

As described above, source code control commands are invoked from the toolbar, the File menu and the
Source Control context menu. The following commands are available, depending on the context:

Add: Add a file from a designated source code directory on your local drive to the source code
repository.

• 

Edit: Check out a file from the current source code repository.• 
Revert Changes: Check the file back into the repository, abandoning any changes made since it
was checked out.

• 

Remove: Delete the file from both the source code repository and the corresponding local
directory.

• 

Update: When the local version no longer matches the repository version of a file, select this
command to update the local version of the file.

• 

Diff (Compare Files): Compare the version of a file open in the Editor Pane with the version in• 

Source Code Control (Komodo Pro) 170/437



the source code repository. Depending on the setting in Preferences, the diff display is shown on
another Komodo editor tab or in a separate window. If the display style for diffs
(Edit|Preferences|Source Code Control) is set to Create new window, press 'F9' or select Jump
to Corresponding Line to open and/or shift focus to the original file in the Editor Pane. If
viewing a diff in an editor tab, right−click and select Jump to Corresponding Line to shift focus
to the editor tab containing the source code. Selecting this option opens the source code tab in the
Editor Pane if it is not already open.
Commit Changes: Submit the file back to the source code repository.• 

Under Perforce, to open files for edit from within a Komodo project, you must first add files to the
project using options on the Project menu. To accomplish the same under CVS, use the following
procedure:

At the command prompt, entercvs co <projname> to open working copies of the files.1. 
On the Projects tab, right−click the project and select Import from File System.2. 
In the Import from File System dialog box, specify the location of the files to be imported and
click Next.

3. 

Click OK to confirm changes to the project.4. 

File Status Icons

If Perforce or CVS is enabled in Komodo's Preferences, the status of files in the source code repository is
indicated by icons that appear on file tabs in the Editor Pane and next to files and projects on the Projects
tab.

The icons can appear in a variety of combinations, depending on the status of the file and where they are
displayed in the Komodo workspace. For example, a green circle next to a padlock on a tab in the Editor
Pane indicates that the file is open for edit and that the version of the file in your local directory is in sync
with the version in the source code repository.

The file is being added to the source code repository.

The file is being deleted from the source code repository.

The file is open for edit.

The version of the file in your local directory is in sync with the version in the source code
repository.

The file is read−only.

The version of the file in your local directory is out of sync with the version in the source code
repository.

There is a conflict between the version of the file in your local directory and the source file that
cannot be resolved by simply syncing your directory with the source code repository. The
discrepancy must be manually resolved.

Source Code Control (Komodo Pro) 171/437



Source Code Control (Komodo Pro) 172/437



GUI Builder (Komodo Pro)
Komodo's GUI Builder is an application used to create graphical user interfaces, such as dialogs
containing radiobuttons and list boxes. The GUI Builder supports building applications using TK with an
extended widget set that includes BWidgets and IWidgets. The GUI Builder is integrated with Komodo
via dialog projects, which consist of a top−level container (with the extension ".ui") and program files
that contain the GUI code and the application code.

Creating Dialog Projects

GUI Builder projects are referenced as "dialog" components within Komodo projects or the Toolbox. To
create a new dialog project, right−click a project name or a folder within a project and select Add|New
Dialog. Alternatively, select Project|Add|New Dialog or Toolbox|Add|New Dialog from the drop−down
menu. Provide the following information about the dialog project:

Specify Dialog Project File: The files related to the dialog are stored in a project file with a ".ui"
extension.

1. 

Specify Target Language: The GUI Builder can generate code in various languages and
language versions:

Perl/Tk (8.0)♦ 
Perl/Tk (8.4)♦ 
Tcl/Tk (8.3)♦ 
Tcl/Tk (8.4)♦ 
Python/Tkinter (8.3)♦ 
Python/Tkinter (8.4)♦ 

2. 

Click OK. The GUI Builder application loads.3. 

Use the GUI Builder to configure the dialog, as described in the sections below.

When you save a new dialog in the GUI Builder, the following items are created in either the Toolbox or
the Project Manager (depending on where the New Dialog command was invoked):

Dialog.ui Project File: The name specified for the dialog is suffixed with ".ui". This dialog
project file contains two files:

Dialog.<language>: Edit this file to add functionality to widgets.♦ 
Dialog_ui.<language>: This file is automatically generated by the GUI Builder and
should not be modified.

♦ 

• 

GUI Builder (Komodo Pro) 173/437

http://aspn.activestate.com/ASPN/docs/ActiveTcl/bwidget/contents.html
http://aspn.activestate.com/ASPN/docs/ActiveTcl/iwidgets/index.html


Modifying an Existing Dialog

To modify the graphical properties of the dialog, right−click the dialog project (with the ".ui" extension)
and select Edit Dialog. This launches the GUI Builder and loads the project. Code within the sections
described in Adding Code to a Dialog are not affected by modifying the graphical properties of a dialog.

Adding Code to a Dialog

To modify the functions within the dialog, open the Dialog.<language> file, (where "Dialog" is the
name of the project, and "<language>" is the standard language suffix) located beneath the dialog project
file. Do not edit the Dialog_ui.<language> file because this file is automatically generated by the GUI
Builder. Therefore, changes could be lost. Note, however, that code entered within the following sections
is preserved, even if the dialog is subsequently modified:

Tcl: proc sections• 
Perl: sub sections• 
Python:def sections• 

Open the callback file by selecting Open File on the Projects context menu, or by double−clicking the
filename on the Projects tab. Comments included in the callback file indicate where to insert callback
code and user code.

Testing the GUI

To run the application, click the green arrow button on the toolbar, or select Commands|Start
Test.

• 

To stop a running application, click the red stop button on the toolbar, or select Commands|Stop
Test.

• 

GUI Builder (Komodo Pro) 174/437



Viewing Code in the Komodo Editor

When you save the GUI in the GUI Builder, corresponding dialog project and language files are created
in Komodo, either in the Project Manager or the Toolbox, depending on where the New Dialog command
was invoked.

To display the code in the Komodo editor, select Commands|View Code. Alternatively, in Komodo, open
the Dialog.<language> file beneath the dialog project.

Dialog Project Options

Dialog projects consist of a "container" file (with the extension ".ui") and the source files containing the
code for the GUI and the code for the application. Options for dialog projects are described below;
options for files contained in dialog projects are the same as options for regular files.

To access options for the selected dialog, do one of the following:

Toolbox|dialog_name|option or Project|dialog_name|option: When a dialog is selected in the
Project Manager or Toolbox, use the Project or Toolbox drop−down menus to access the list of
options. The name of the dialog currently selected in the Project Manager or the Toolbox is
displayed in the drop−down menu.

• 

Context Menu: Right−click a dialog in a project or the Toolbox and select the desired option.• 

The following options are available:

Edit Dialog: Use this option to launch the GUI Builder application.• 
Test Dialog: This option runs the application.• 
Refresh Status: This option checks the read/write disk status of the dialog project file. If the
dialog project file is stored in a source code control system, Refresh Status also checks the
repository status of the file.

• 

Cut/Copy/Paste: These options are used to remove the dialog from a project or the Toolbox, or
to move dialog projects between the Project Manager and the Toolbox (and vice versa).

• 

Export as Project File: When this option is invoked, a new project file is created that contains
the dialog from which the option is invoked. You are prompted to provide the name of the new
project file and the directory where it is stored. To open the new project file, select
File|Open|Project.

• 

Export Package: Dialogs can be archived and distributed among multiple Komodo users via
"packages". Packages are compressed archive files that contain the dialog from which the Export
Package option was invoked. Packages are stored in files with a ".kpz" extension, and can be
opened by any archiving utility that supportslibz (for example WinZip). The Export Package
option differs from the Export as Project File option in that copies of filesystem−based
components (such as files and dialog projects) are included in the archive. Conversely, Export as

• 

GUI Builder (Komodo Pro) 175/437



Project File creates a project with a reference to the component's original location and does not
create copies of the components. When Export Package is invoked, you are prompted for a name
and file location for the package. Exported packages can only be imported into "container"
objects in Komodo, such as projects, the Toolbox, and folders within projects and the Toolbox.
See Toolbox − Exporting and Importing Toolbox Contents, Projects − Importing and Exporting
Projects via Packages, or Folders − Import Contents from Package for more information.
Source Control: If Komodo is configured to work in conjunction with a Source Code Control
system, this option is used to access SCC commands for the dialog project file.

• 

Source Control on Contents: If Komodo is configured to work in conjunction with a Source
Code Control system, this option is used to invoke SCC commands that operate on the contents
of the dialog project.

• 

Delete: To remove a dialog from a project or the Toolbox, select this option. The dialog project
(and the files it contains) is not deleted from disk.

• 

GUI Builder Overview

Quick Overview

Add rows and columns by double−clicking grid lines.• 

GUI Builder (Komodo Pro) 176/437



Resize cells by dragging the grid lines.• 
Drag and drop widgets from the Palette tab to a cell in the workspace.• 
Double−click widgets in the workspace to configure their properties.• 
Use the Menu tab to create menus and add menu item widgets.• 
Select Edit|View Menus or press 'Ctrl'+'M' to show or hide menus in the workspace.• 
Use the Dialog tab to manage the structure of GUI Builder projects.• 
Use the Menu tab to add cascading menus and menu items.• 
Click the green arrow button on the toolbar or select Commands|Start Test to test the interface.• 
Save the GUI to create the files in Komodo.• 

Limitations

There are numerous "container" widgets available for building UIs in the GUI Builder that vary
depending on language. These include frame, notebook and panedwindow, among others. The
only "container" widgets that GUI Builder supports in full are the core frame and labelframe
widgets. Placement widgets inside the other "container" widgets must be done by hand currently.

• 

Specification of the dialog title must be done in the user code.• 
The GUI Builder does not check whether you have the requisite Tk installation and associated
widget modules (if necessary). This means you may be able to create UIs that you cannot
actually test.

• 

If you create widgets, generate code, and later rename or remove those widgets, any generated
command code for those widgets is not removed. This is because the round−trip code generation
doesn't know about what has been deleted, just what currently exists, and pre−existing code is
just parsed and reinserted.

• 

Workspace

The workspace is used to design the GUI. See Adding and Resizing Rows and Columns and Adding
Widgets to a Dialog for more about using the GUI Builder workspace.

GUI Builder (Komodo Pro) 177/437



The column and row handles at the top and the left of the workspace indicate the selected cell. When a
cell is selected, the column and row handles are displayed in blue. When a single column or row handle
is selected, it is displayed in red. Use the Appearance Preferences to set color and size preferences for the
workspace.

Toolbar

The toolbar contains buttons for the most common widget configuration options. You must select the
widget in the workspace or on the Dialog tab before changing widget properties. For a description of how
to use the toolbar buttons to configure basic widget properties, see Configuring Widget Properties.

From left to right, the tools are:

Save file

GUI Builder (Komodo Pro) 178/437



Widget text

Widget text size

Widget text bold and italic

Widget text alignment

Widget foreground and background color

Widget position in cell

Widget border and relief

Widget orientation (for the scrollbar widget)

Widget delete

Run or stop running interface

Widget Palette Tab

The Palette tab is the tab displayed by default in the GUI
Builder. Its contents vary depending on the language that
was selected when a dialog was added to the Toolbox or
Project Manager. For more about language selection, see
Creating Dialog Projects.

Use the Next Widget and Previous Widget commands on
the Navigate submenu to move from one widget to another
in the workspace.

Widget Properties

Properties vary according to the selected target language.
Select File|Project Settings to view the selected target
language.

GUI Builder (Komodo Pro) 179/437



Perl/Tk 8.0 Palette tab

To change the properties of an individual widget,
double−click the widget in the workspace.

• 

To change the default properties for a widget,
double−click the widget on the Palette tab.

• 

The settings available in the widget properties dialog box
vary depending on the type of widget that is selected.

Dialog Tab

The Dialog tab provides a hierarchical overview of a GUI Builder
project. As you add controls and menus to the workspace, a structured
outline of the chosen widgets is displayed on the Dialog tab. The
contents of each project are displayed beneath a collapsible
"Container" node that appears at the top of the tab. Double−click
widgets on the Dialog tab to view or edit their properties.

Use commands on the Navigate submenu to determine the
relationships between widgets. Select Navigate|Select Parent to
highlight the parent element of a selected widget. Select
Navigate|Select 1st Child to highlight the widget that is one level
below the selected element in the project hierarchy. Note that these
commands are only available if you select a widget that has a
"parent/child" relationship with one or more other widgets.

GUI Builder (Komodo Pro) 180/437



Menu Tab

Use the widgets on the Menu tab to add cascading menus and menu
items to a GUI. Just as the Dialog tab provides a hierarchical overview
of the controls and buttons in a dialog, the Menu tab displays the
menus and menu options that make up the menu bar in a GUI Builder
project. Select Edit|View Menus to display the menus at the top of the
workspace. The available menu widgets are (from left to right)
"cascade", "command", "separator", "checkbutton", and "radiobutton".
For directions on adding menu widgets to the workspace, see Adding
Widgets to a Dialog.

Add drop−down menus and menu items to your GUI using the widgets
on the Menu tab. Select Edit|View Menus to display menus in the
workspace.

GUI Builder (Komodo Pro) 181/437



Status Bar

The status bar displays warnings, progress messages and diagnostics. Help messages are displayed only
if Show Statusbar Help is selected in GUI Builder Preferences. Help messages are displayed for the
object under the current cursor position. In addition, when you drag a widget or resize handle, the status
bar displays the grid position or size.

Building GUI Applications

Adding and Resizing Rows and Columns

When you launch the GUI Builder, the workspace contains a default grid with two rows and two
columns. You can create a new dialog with this default grid, or modify the default grid using the options
described below.

To add rows and columns:

Add a Row or Column: Click on a grid line, then press the 'Insert' key. Alternatively,
double−click the grid line.

• 

Add a Row and a Column: Click in a grid cell, then press the 'Insert' key.• 

To delete rows and columns:

Delete a Row or Column: Click on a grid line, then press the 'Delete' key. Rows and columns
cannot be deleted if they contain widgets.

• 

Delete a Row and a Column: Click in a grid cell, then press the 'Delete' key. Rows and columns
cannot be deleted if they contain widgets.

• 

To resize rows and columns:

Configure Row and Column Size, Weight and Widget Padding: Click in a grid cell, then select
Edit|Row & Column Properties. Use this dialog to change size, weight and the padding around
widgets.

• 

Resize Row or Column: Click and drag a grid line.• 

To straddle rows and columns:

GUI Builder (Komodo Pro) 182/437



Grid cells can be resized to span multiple columns or rows. Note that straddling rows and columns is
only possible when the grid cell that you want to expand contains a widget, and the adjacent cells do not
contain widgets. To straddle rows or columns:

Click to select the cell containing the widget.1. 
Position the cursor over one of the resize handles. The cursor changes to an arrow pointing
towards a line.

2. 

Click and drag across the adjacent cells.3. 

Adding Widgets

To add widgets from the Palette tab:

On the Palette tab, click the desired widget, drag it into a cell in the workspace.• 

To add widgets from the Menu tab:

Click the MENU container on the Menu tab or, if Edit|View Menus has been selected, click New
Cascade at the top of the workspace, to add a new menu to the GUI.

1. 

Select a top−level "menuitem" on the Menu tab to make the Menu widgets available. Use the
"cascade", "command", "separator", "checkbutton", and "radiobutton" menu item widgets to
create menus.

2. 

Deleting Widgets

To remove a widget or menu item from the workspace, select it and click the "delete" button on the
toolbar for widgets, or click the "delete" button on the Menu tab for menu items.

Configuring Widget Properties

Basic Widget Properties

Select the widget in the GUI Builder workspace. The associated options become available on the
toolbar.

1. 

Use the controls on the toolbar to edit widget properties.2. 

Advanced Widget Properties

Select the widget in the GUI Builder workspace, then double−click it or select Edit|Widget
Properties to display a widget properties dialog box.

• 

GUI Builder (Komodo Pro) 183/437



Resizing a Widget

To make a widget resizable, click the column or row handle once to select, then again to toggle
the resizable setting. When the arrows on the handle point outwards, the widget becomes
resizable. Note that this characteristic only has an effect if the widget is configured to adhere to
two (or four) sides of the cell. (The scrollbar widget is resizable by default.)

• 

To make a widget span rows or columns, point the mouse at the edge of the widget and drag the
widget resize handle when the mouse pointer changes (grid lines spanned by the widget
disappear).

• 

Attaching Scrollbars to a Widget

To attach scrollbars to widgets, first insert the desired widget and scrollbar in the workspace.
Then select the widget, and select Commands|Attach Scrollbars. You are prompted to specify
which scrollbars you wish to attach. Scrollbars can only be attached to scrollable widgets.

• 

Loading a GUI Builder Project into a Frame Widget

Load Project Into Frame: This option becomes available on the Commands menu when a
"frame" or "labelframe" widget is added to the workspace. Select Commands|Load Project Into
Frame to navigate to a GUI component contained in another GUI Builder project (.ui) file, and
then load it into the selected frame. This feature is particularly useful if you have an interface
component that you want to insert repeatedly in your GUI projects.

• 

GUI Builder Preferences

General Preferences

Insert if widget dropped on gridline: If this option is enabled, a widget is automatically inserted
in a new row or column when you drop the widget on a grid line. If this option is not enabled, the
GUI Builder ignores widgets dropped on grid lines.

• 

Confirm saves before test: If this option is enabled, you are prompted to save changed files
before testing the application.

• 

Confirm widget delete: If this option is enabled, you are prompted to confirm that you want to
delete a widget in the workspace.

• 

Autosave on quit: If this option is enabled, changed files are automatically saved. Otherwise,
you are prompted to save changed files.

• 

GUI Builder (Komodo Pro) 184/437



Mouse Gravity: This setting determines how far the mouse pointer must move to invoke the
action. Set the value lower to make the mouse more responsive and higher to give the mouse
more tolerance.

• 

Show Tooltips: If this option is enabled, yellow pop−up hints are displayed whenever you hover
the mouse pointer over an object.

• 

Show Statusbar Help: If this option is enabled, usage tips are displayed in the bottom right
corner of the GUI Builder window.

• 

Appearance Preferences

Selection Color: When a widget or grid line is selected (by clicking on it), it is outlined in the
color specified here.

• 

Grid Background: This setting specifies the color of the grid background.• 
Active Over Color: When you hover the mouse pointer over a grid line, the line changes to the
color specified here.

• 

Frame Background: Set the color for the background of the frame widget.• 
Show Grid Lines: If this option is enabled, grid lines are displayed. Alternatively, click the
button at the intersection of the row and column handles (top left corner of the workspace) to
toggle grid lines on and off.

• 

Grid Line Thickness: Set the thickness of the grid line.• 
Default Grid Spacing: When you create a new GUI, cells are created by default with the pixel
size specified here.

• 

Control Points Size: Set the size of the Widget Resize Handles.• 

Tk and Widget Reference

Reference pages for individual widgets are included in the ActiveTcl documentation. Select Help|Help
for Languages to access either a local version (if installed) or web version of the ActiveTcl
documentation.

"Tk" is a toolkit for building graphical user interfaces. It was originally developed for Tcl, but has since
been adapted for Perl and Python. The ActivePerl, ActivePython and ActiveTcl language distributions
include documentation regarding each language's Tk support. (Note that the Tcl/Tk reference is divided
into three categories: the core (Tk) manual and two groups of extensions (BWidgets and IWidgets).

Select Help|Help for Languages to launch the local version of the language documentation (if installed)
or to access the web version. Links to the language−specific Tk reference pages on ActiveState's ASPN
site are provided below:

Perl/Tk• 
Tcl/Tk:

Tk Manual♦ 
• 

GUI Builder (Komodo Pro) 185/437

http://aspn.activestate.com/ASPN/Reference/Products/ActivePerl/site/lib/Tk.html
http://aspn.activestate.com/ASPN/Products/ActiveTcl/ActiveTcl8.4.1.0-html/tcl/tk_contents.htm


BWidgets♦ 
IWidgets♦ 

Python/Tkinter• 

GUI Builder (Komodo Pro) 186/437

http://aspn.activestate.com/ASPN/Products/ActiveTcl/ActiveTcl8.4.1.0-html/bwidget/contents.html
http://aspn.activestate.com/ASPN/Products/ActiveTcl/ActiveTcl8.4.1.0-html/iwidgets/index.html
http://aspn.activestate.com/ASPN/docs/ActivePython/2.3/python/lib/tkinter.html


Using the Rx Toolkit
Komodo's Rx Toolkit is a tool for building, editing and debugging regular
expressions. Build a regular expression in the Regular Expression pane, and
enter the sample search string in the Search Text pane. Adjust the regular
expression as necessary to produce the desired matches in the Match Results
pane.

Note: Although the Rx Toolkit has a Python back end, most Perl, PHP and Tcl
regular expression syntax is also supported.

If you are new to Regular Expressions, see the Regular Expressions Primer. In
addition, online references for Python, Perl, PHP and Tcl regular expressions
are available via the Rx Toolkit's Help menu.

To open the Rx Toolkit, do one of the following:

On the Standard Toolbar, click .

or

• 

On the Tools menu, select Rx Toolkit.• 

To close the Rx Toolkit:

Click the "X" button in the top right corner of the Rx Toolkit window.• 

Rx Toolkit Quick Reference

Create and edit regular expressions in the Regular Expression pane.• 
Apply one or more metacharacters to a regular expression by
selecting them from the Shortcuts menu or entering them in the
Regular Expression pane.

• 

Select a match type using the buttons at the top of the Rx Toolkit
window.

• 

Apply modifiers to a regular expression by selecting one or more
Modifiers check boxes.

• 

Test a regular expression against a string by entering text in the
Search Text pane, or by clicking the Search Text pane's Open button
and navigating to a file.

• 

Right−click a pane in the Rx Toolkit to access a context menu used to
Show/Hide Indentation Guides, Show/Hide Line Numbers,
Show/Hide EOL Markers, Show/Hide Whitespace and turn Word

• 

Tutorial

Regular
Expression
Primer

• 

Feature Showcase

test a regular
expression

• 

Using the Rx Toolkit 187/437



Wrap on and off. This context menu is not available in the Match
Results pane.
Select Help|Load Sample Regex and Search Text to reload the
default regular expression and search text if it has been replaced or
deleted.

• 

Double−click a result in the Match Results pane to highlight the
corresponding text in the Search Text pane.

• 

Creating Regular Expressions

Use the Rx Toolkit to create and edit regular expressions. Create regular expressions by typing them in
the Regular Expression pane. A regular expression can include metacharacters, anchors, quantifiers,
digits, and alphanumeric characters.

Many of the display characteristics available in the Editor Pane can be enabled in the Regular
Expression field. However, these characteristics must be manually enabled via key bindings. For
example, to display line numbers in the Regular Expression field, press 'Ctrl'+'Shift'+'6' (if the default
key binding scheme is in effect).

Note: Do not enclose regular expressions in forward slashes ("/"). The Rx Toolkit does not recognize
enclosing slashes.

Adding Metacharacters to a Regular Expression

The Shortcuts menu provides a list of all of the metacharacters that are valid in the Rx Toolkit.

To add a metacharacter to a regular expression:

Click Shortcuts to the right of the Regular Expression pane.1. 
Select a metacharacter from the list. The metacharacter is added to the Regular Expression pane.2. 

Using the Rx Toolkit 188/437



or

In the Regular Expression pane, type a metacharacter.• 

Setting the Match Type

The buttons at the top of the Rx Toolkit Window determine which function is used to match the regular
expression to the search text. The options are based on module−level functions of Python's re module.
Choose from the following options:

Match: Scan the search text for the first instance of a match for the regular expression.• 
Match All: Find all matches for the regular expression in the search text and display them as a
series of matches in the Match Results pane.

• 

Split: Scan the search text for regular expression matches and split the string apart wherever
there is match. Each match is displayed on a separate line in the Match Results pane.

• 

Replace: Scan the text for the first occurrence of the regular expression and replace it with text
specified in the Replacement pane. The Replacement pane is only displayed when either the
Replace or Replace All is selected.

• 

Replace All: Scan the text for all occurrences of the regular expression and replace them with the
text specified in the Replacement pane. The Replacement pane is only displayed when either the
Replace or Replace All is selected.

• 

Adding Modifiers to a Regular Expression

Add modifiers to regular expression by selecting one or more of the check boxes to the right of the
Regular Expression pane:

Note: You must use the Modifiers check boxes to add modifiers to a regular expression. The Rx Toolkit
does not recognize modifiers entered in the Regular Expression pane.

Ignore Case: Ignore alphabetic case distinctions while matching. Use this to avoid specifying the
case in the pattern you are trying to match.

• 

Multi−line Mode: Let caret "^" and dollar "$" match next to newline characters. Use this when a
pattern is more than one line long and has at least one newline character.

• 

Single−line Mode: Let dot "." match newline characters. Use this when a pattern is more than
one line long and has at least one newline character.

• 

Verbose: Permit the use of whitespace and comments in regular expressions. Use this to pretty
print and/or add comments to regular expressions.

• 

Unicode (Python Only): Make the special characters "\w", "\W", "\b" and "\B" dependent on
Unicode character properties.

• 

Locale (Python Only): Make the special characters "\w", "\W", "\b" and "\B" dependent on the
current locale.

• 

Using the Rx Toolkit 189/437

http://aspn.activestate.com/ASPN/docs/ActivePython/2.3/python/lib/module-re.html


Evaluating Regular Expressions

A debugged regular expression correctly matches the intended patterns and provides information about
which variable contains which pattern.

If there is a match...

Matches are displayed in the Match Results pane.• 
Komodo highlights the search text string in yellow.• 

If there is no match...

If a regular expression does not match the test string, an error message is displayed in the Match
Results pane.

• 

If a regular expression is invalid, the title bar of the Match Results pane becomes red and details
of the error are displayed in that pane.

• 

Match Results

If a regular expression collects multiple words, phrases or numbers and stores them in groups, the Match
Results pane displays details of the contents of each group.

The Match Results pane is displayed with as many as four columns, depending on which match type is
selected. The Group column displays a folder for each match; the folders contain numbered group
variables. The Span column displays the length in characters of each match. The Value column lists the
values of each variable.

Using the Rx Toolkit 190/437



Modifier Examples

This section shows some sample regular expressions with various modifiers applied. In all examples, the
default match type (Match All) is assumed:

Ignore Case• 
Multi−line• 
Single−line• 
Multi−line and Single−line• 
Verbose• 

Using Ignore Case

The Ignore case modifier ignores alphabetic case distinctions while matching. Use this when you do not
want to specify the case in the pattern you are trying to match.

To match the following test string...

    Testing123

...you could use the following regular expression with Ignore case selected:

    ^([a−z]+)(\d+)

The following results are displayed in the Match Results pane:

Discussion

This regular expression matches the entire test string.

The^ matches the beginning of a string. The[a−z] matches any lowercase letter from "a" to "z". The+
matches any lowercase letter from "a" to "z" one or more times. The Ignore case modifier lets the regular
expression match any uppercase or lowercase letters. Therefore^([a−z]+) matches "Testing". The
(\d+)matches any digit one or more times, so it matches "123".

Using the Rx Toolkit 191/437



Using Multi−Line Mode

The Multi−line modifier allowŝ  and$ to match next to newline characters. Use this when a pattern is
more than one line long and has at least one newline character.

To match the subject part of the following test string...

    "okay?"

...you could use the following regular expression with Multi−line selected:

    ^(\"okay\?\")

The following results are displayed in the Match Results pane:

Discussion

This regular expression matches the entire test string.

The^ matches the beginning of any line. The\" matches the double quotes in the test string. The string
matches the literal word "okay". The\? matches the question mark "?". The\" matches the terminal
double quotes. There is only one variable group in this regular expression, and it contains the entire test
string.

Using Single−Line Mode

The Single−line modifier mode allows "." to match newline characters. Use this when a pattern is more
than one line long, has at least one newline character, and you want to match newline characters.

To match the following test string...

    Subject: Why did this
    work?

...you could use the following regular expression with Single−line selected:

    (:[\t ]+)(.*)work\?

The following results are displayed in the Match Results pane:

Using the Rx Toolkit 192/437



Discussion

This regular expression matches everything in the test string following the word "Subject", including the
colon and the question mark.

The(\s+) matches any space one or more times, so it matches the space after the colon. The(.*)
matches any character zero or more times, and the Single−line modifier allows the period to match the
newline character. Therefore(.*) matches "Why did this <newline> match". The\? matches the
terminal question mark "?".

Using Multi−line Mode and Single−line Mode

To match more of the following test string...

    Subject: Why did this
    work?

...you would need both the Multi−line and Single−line modifiers selected for this regular expression:

    ([\t ]+)(.*)^work\?

The following results are displayed in the Match Results pane:

Discussion

This regular expression matches everything in the test string following the word "Subject", including the
colon and the question mark.

The([\t ]+) matches a Tab character or a space one or more times, which matches the space after the
colon. The(.*) matches any character zero or more times, which matches "Why did this <newline>".
The^work matches the literal "work" on the second line. The\? matches the terminal question mark

Using the Rx Toolkit 193/437



"?".

If you used only the Single−line modifier, this match would fail because the caret "^" would only match
the beginning of a string.

If you used only the Multi−line modifier, this match would fail because the period "." would not match
the newline character.

Using Verbose

The Verbose modifier ignores whitespace and comments in the regular expression. Use this when you
want to pretty print and/or add comments to a regular expression.

To match the following test string...

    testing123

...you could use the following regular expression with the Verbose modifier selected:

    (.*?)  (\d+)  # this matches testing123

The following results are displayed in the Match Results pane:

Discussion

This regular expression matches the entire test string.

The.* matches any character zero or more times, the? makes the* not greedy, and the Verbose
modifier ignores the spaces after the(.*?). Therefore, (.*?) matches "testing" and populates the
"Group 1" variable. The(\d+) matches any digit one or more times, so this matches "123" and
populates the "Group 2" variable. The Verbose modifier ignores the spaces after(\d+) and ignores the
comments at the end of the regular expression.

Using the Rx Toolkit 194/437



Using Regular Expressions

Once a regular expression has been built and debugged, you can add it to your code by copying and
pasting the regular expression into the Komodo Editor Pane. Each language is a little different in the way
it incorporates regular expressions. The following are examples of regular expressions used in Perl,
Python, PHP and Tcl.

Perl

This Perl code uses a regular expression to match two different spellings of the same word. In this case
the program prints all instances of "color" and "colour".

while($word = <STDIN>){
    print "$word" if ($word =~ /colou?r/i );
}

The metacharacter "?" specifies that the preceding character, "u", occurs zero or one times. The modifier
"i" (ignore case) that follows/colou?r/ means that the regular expression will match$word,
regardless of whether the specified characters are uppercase or lowercase (for example, Color, COLOR
and CoLour will all match).

Python

This Python code uses a regular expression to match a pattern in a string. In Python, regular expressions
are available via there module.

import re
m = re.search("Java[Ss]cript", "in the JavaScript tutorial")
if m:
    print "matches:", m.group()
else:
    print "Doesn't match."

There.search() function returns a match object if the regular expression matches; otherwise, it
returns none. The character class "[Ss]" is used to find the word "JavaScript", regardless of whether the
"s" is capitalized. If there is a match, the script uses thegroup() method to return the matching strings.
Otherwise the program prints "Doesn't Match".

Using the Rx Toolkit 195/437



Tcl

This Tcl code uses a regular expression to match all lines in a document that contain a URL.

while {[gets $doc line]!=−1} {
   if {regexp −nocase {www\..*\.com} $line} {
       puts $line

Thiswhile loop searches every line in a file for any instance of a URL and displays the results. Tcl
implements regular expressions using theregexp and regsub commands. In the example shown
above, theregexp is followed by the −nocase option, which specifies that the following regular
expression should match, regardless of case. The regular expression attempts to match all web addresses.
Notice the use of backslashes to include the literal dots (.) that follow "www" and precede "com".

PHP

This PHP code uses a Perl Compatible Regular Expressions(PCRE) to search for valid phone numbers in
the United States and Canada; that is, numbers with a three−digit area code, followed by an additional
seven digits.

$numbers = array("777−555−4444",
                  "800−123−4567",
                 "(999)555−1111",
                 "604.555.1212",
                 "555−1212",
                 "This is not a number",
                 "1234−123−12345",
                 "123−123−1234a",
                 "abc−123−1234");

function isValidPhoneNumber($number) {
    return preg_match("/\(?\d{3}\)?[−\s.]?\d{3}[−\s.]\d{4}$/x", $number);
}

foreach ($numbers as $number) {
    if (isValidPhoneNumber($number)) { 
        echo "The number '$number' is valid\n";
    } else {
        echo "The number '$number' is not valid\n";
    }
}

This PHP example uses thepreg_match function for matching regular expressions. Other Perl
compatible regular expression functions are also available. If the functionisValidPhone returns true,
the program outputs a statement that includes the valid phone number. Otherwise, it outputs a statement
advising that the number is not valid.

Using the Rx Toolkit 196/437

http://aspn.activestate.com/ASPN/docs/PHP/ref.pcre.html
http://aspn.activestate.com/ASPN/docs/PHP/ref.pcre.html
http://aspn.activestate.com/ASPN/docs/PHP/ref.pcre.html


Using the Rx Toolkit 197/437



Regular Expressions Primer
The Regular Expressions Primer is a tutorial for those completely new to regular expressions. To
familiarize you with regular expressions, this primer starts with the simple building blocks of the syntax
and through examples, builds to construct expressions useful for solving real every−day problems. The
primer later discusses how to search for and replace text with regular expression syntax.

While the examples presented in the primer are generic in structure and syntax, there are minor usage
differences amongst the Komodo supported languages (Python, Perl, Tcl, etc). These differences are
relevant when "Python Regular Expressions" are specified for use in Komodo's Find dialog box and
Open/Find Toolbar. See More Regex Resources for information on Python regular expressions.

Regular expressions are embedded in programs to parse text. For example, a Python program might
contain a regular expression as follows:

  import re
  n = re.compile(r'\bw[a−z]*', re.IGNORECASE)
  print n.findall('will match all words beginning with the letter w.')

An advanced Python regular expression embedded in a program:

  # Generate statement parsing regexes.
  stmts = ['#\s*(?P<op>if|elif|ifdef|ifndef)\s+(?P<expr>.*?)',
           '#\s*(?P<op>else|endif)',
           '#\s*(?P<op>error)\s+(?P<error>.*?)',
           '#\s*(?P<op>define)\s+(?P<var>[^\s]*?)(\s+(?P<val>.+?))?',
           '#\s*(?P<op>undef)\s+(?P<var>[^\s]*?)']
  patterns = ['^\s*%s\s*%s\s*%s\s*$'
              % (re.escape(cg[0]), stmt, re.escape(cg[1]))
              for cg in cgs for stmt in stmts]
  stmtRes = [re.compile(p) for p in patterns]

In this example, regular expressions are used within various statements. See the Python Tutorial for the
full program where this regular expression is used.

Komodo's Rx Toolkit is used to build and evaluate regular expressions. See Using Rx Toolkit for more
information.

About Regular Expressions

Regular expressions are used to describe patterns of characters that match against text strings. They can
be used as a tool to search for and replace text, manipulate data, or test for a certain condition in a string
of characters. Many everyday tasks can be accomplished with regular expressions, such as checking for
the occurrence of a specific word or phrase in the body of an e−mail message, or finding specific file

Regular Expressions Primer 198/437



types, such as.txt files, in a folder or directory. Regular expressions are often called "regex",
"regexes", "regexps", and "RE". This primer uses the terms "regular expressions", "regex", and "regexes"
equally.

About Regex Syntax

Regular expressions use syntax elements comprised of alphanumeric characters and symbols. For
example, the regex(2) searches for the number 2, while the regex([1−9][0−9]{2}−[0−9]{4})
matches a regular 7−digit phone number.

There are many flavors and types of regular expression syntax. These variations are found in various
tools, languages and operating systems. For example, Perl, Python, grep, sed, VI, and Unix all use
variations on standard regex syntax. This primer focuses on standard regex patterns not tied to a specific
language or tool. This standard syntax can be later applied to the specific language, tool or application of
your choice.

Building Simple Patterns

Complete regular expressions are constructed using characters as small building block units. Each
building block is in itself simple, but since these units can be combined in an infinite number of ways,
knowing how to combine them to achieve a goal takes some practice. This section shows you how to
build regexes through examples ranging from the simple to the more complex.

Matching Simple Strings

The simplest and most common type of regex is an alphanumeric string that matches itself, called a
"literal text match". A literal text regex matches anywhere along a string. For example, a literal string
matches itself when placed alone, and at the beginning, middle, or end of a larger string. Literal text
matches are case sensitive.

Using regexes to search for simple strings.

Example 1: Search for the string "at".

Regex:

    at

• 

Matches:• 

Regular Expressions Primer 199/437



    at
    math
    hat
    ate

Doesn't Match:

    it
    a−t
    At

• 

Example 2: Search for the string "email".

Regex:

    email

• 

Matches:

    email
    emailing
    many_emails

• 

Doesn't Match:

    Email
    EMAILing
    e−mails

• 

Example 3: Search for the alphanumeric string "abcdE567".

Regex:

    abcdE567

• 

Matches:

    abcdE567
    AabcdE567ing
    text_abcdE567

• 

Doesn't Match:

    SPAMabCdE567
    ABCDe567

• 

Note: Regular expressions are case sensitive unless case is deliberately modified.

Regular Expressions Primer 200/437



Searching with Wildcards

In the previous examples, regular expressions are constructed with literal characters that match
themselves. There are other characters in regex syntax that match in a more generalized way. These are
called "metacharacters". Metacharacters do not match themselves, but rather perform a specific task
when used in a regular expression. One such metacharacter is the dot ".", or wildcard. When used in a
regular expression, the wildcard can match any single character.

Using the wildcard to match any character.

Example 1: Use a wildcard to search for any one character before the string "ubject:".

Regex:

    .ubject:

• 

Matches:

    Subject:
    subject:
    Fubject:

• 

Doesn't Match:

    Subject
    subject

• 

Example 2: Use three dots "..." to search for any three characters within a string.

Regex:

    t...s

• 

Matches:

    trees
    tEENs
    t345s
    t−4−s

• 

Doesn't Match:

   Trees
   twentys
   t1234s

• 

Example 3: Use several wildcards to match characters throughout a string.

Regular Expressions Primer 201/437



Regex:

    .a.a.a

• 

Matches:

    Canada
    alabama
    banana
    3a4a5a

• 

Doesn't Match:

    aaa

• 

Searching for Special Characters

In regular expression syntax, most non−alphanumerical characters are treated as special characters. These
characters, called "metacharacters", include asterisks, question marks, dots, slashes, etc. In order to
search for a metacharacter without using its special attribute, precede it with a backslash "\" to change it
into a literal character. For example, to build a regex to search for a.txt file, precede the dot with a
backslash\.txt to prevent the dot's special function, a wildcard search. The backslash, called an
"escape character" in regex terminology, turns metacharacters into literal characters.

Precede the following metacharacters with a backslash "\" to search for them as literal characters:

^ $ + * ? . | ( ) { } [ ] \

Using the backslash "\" to escape special characters in a regular expression.

Example 1: Escape the dollar sign "$" to find the alphanumeric string "$100".

Regex:

    \$100

• 

Matches:

    $100
    $1000

• 

Doesn't Match:

    \$100
    100

• 

Regular Expressions Primer 202/437



Example 2: Use the dot "." as a literal character to find a file called "email.txt".

Regex:

    email\.txt

• 

Matches:

    email.txt

• 

Doesn't Match:

    email
    txt
    email_txt

• 

Example 3: Escape the backslash "\" character to search for a Windows file.

Regex:

    c:\\readme\.txt

• 

Matches:

    c:\readme.txt

• 

Doesn't Match:

    c:\\readme.txt
    d:\readme.txt
    c:/readme.txt

• 

Ranges and Repetition

Regex syntax includes metacharacters which specify the number of times a particular character or string
must match. This group of metacharacters is called "quantifiers"; they influence the quantity of matches
found. Quantifiers act on the element immediately preceding them, which could be a digit, a letter, or
another metacharacter (including spaces as metacharacters not previously defined and the dot "."). This
section demonstrates how quantifiers search using ranges and repetition.

Regular Expressions Primer 203/437



Ranges, {min, max}

Ranges are considered a "counting qualifier" in regular expressions. This is because they specify the
minimum number of matches to find and the maximum number of matches to allow. Use ranges in regex
searches when a bound, or a limit, should be placed on search results. For example, the range{3,5}
matches an item at least 3 times, but not more than 5 times. When this range is combined with the regex,
a{3,5}, the strings "aaa", "aaaa", and "aaaaa" are successfully matched. If only a single number is
expressed within curly braces{3}, the pattern matches exactly three items. For example, the regex
b{3} matches the string "bbb".

Using ranges to identify search patterns.

Example 1: Match the preceding "0" at least 3 times with a maximum of 5 times.

Regex:

    60{3,5} years

• 

Matches:

    6000 years
    60000 years
    600000 years

• 

Doesn't Match:

    60 years
    600 years
    6003 years
    6000000 years

• 

Example 2: Using the "." wildcard to match any character sequence two or three characters long.

Regex:

    .{2,3}

• 

Matches:

    404
    44
    com
    w3

• 

Doesn't Match:

    4
    a
    aaaa

• 

Regular Expressions Primer 204/437



Example 3: Match the preceding "e" exactly twice.

Regex:

    be{2}t

• 

Matches:

    beet

• 

Doesn't Match:

    bet
    beat
    eee

• 

Example 4: Match the preceding "w" exactly three times.

Regex:

    w{3}\.mydomain\.com

• 

Matches:

    www.mydomain.com

• 

Doesn't Match:

    web.mydomain.com
    w3.mydomain.com

• 

Repetition, ?*+

Unlike range quantifiers, the repetition quantifiers (question mark "?", asterisk "*", and plus "+") have
few limits when performing regex searches. This is significant because these quantifiers settle for the
minimum number of required matches, but always attempt to match as many times as possible, up to the
maximum allowed. For example, the question mark "?" matches any preceding character 0 or 1 times, the
asterisk "*" matches the preceding character 0 or more times, and the plus "+" matches the preceding
character 1 or more times. Use repetition quantifiers in regex searches when large numbers of results are
desired.

Using repetition to search for repeated characters with few limits.

Example 1: Use "?" to match the "u" character 0 or 1 times.

Regular Expressions Primer 205/437



Regex:

    colou?r

• 

Matches:

    colour
    color

• 

Doesn't Match:

    colouur
    Colour

• 

Example 2: Use "*" to match the preceding item 0 or more times; use "." to match any character.

Regex:

    www\.my.*\.com

• 

Matches:

    www.mysite.com
    www.mypage.com
    www.my.com

• 

Doesn't Match:

    www.oursite.com
    mypage.com

• 

Example 3: Use "+" to match the preceding "5" at least once.

Regex:

    bob5+@foo\.com

• 

Matches:

    bob5@foo.com
    bob5555@foo.com

• 

Doesn't Match:

    bob@foo.com
    bob65555@foo.com

• 

Regular Expressions Primer 206/437



Quantifier Summary

The following table defines the various regex quantifiers. Note that each quantifier is unique and will
perform a varying minimum and maximum number of matches in order to search successfully.

Quantifier Description

{num} Matches the preceding
element num times.

{min,
max}

Matches the preceding
element at least min times,
but not more than max
times.

? Matches any preceding
element 0 or 1 times.

* Matches the preceding
element 0 or more times.

+ Matches the preceding
element 1 or more times.

Using Conditional Expressions

Conditional expressions help qualify and restrict regex searches, increasing the probability of a desirable
match. The vertical bar "|" symbol, meaning "OR", places a condition on the regex to search for either
one character in a string or another. Because the regex has a list of alternate choices to evaluate, this
regex technique is called "alternation". To search for either one character or another, insert a vertical bar
"|" between the desired characters.

Example 1: Use "|" to alternate a search for various spellings of a string.

Regex:

    gray|grey

• 

Matches:

    gray
    grey 

• 

Doesn't Match:

    GREY
    Gray

• 

Regular Expressions Primer 207/437



Example 2: Use "|" to alternate a search for either email or Email or EMAIL or e−mail.

Regex:

    email|Email|EMAIL|e−mail

• 

Matches:

    email
    Email
    EMAIL
    e−mail

• 

Doesn't Match:

    EmAiL
    E−Mail

• 

Grouping Similar Items in Parentheses

Use parentheses to enclose a group of related search elements. Parentheses limit scope on alternation and
create substrings to enhance searches with metacharacters. For example, use parentheses to group the
expression(abc), then apply the range quantifier{3} to find instances of the string "abcabcabc".

Using parentheses to group regular expressions.

Example 1: Use parentheses and a range quantifier to find instances of the string "abcabcabc".

Regex:

    (abc){3}

• 

Matches:

    abcabcabc
    abcabcabcabc

• 

Doesn't Match:

    abc
    abcabc

• 

Example 2: Use parentheses to limit the scope of alternative matches on the words gray and grey.

Regular Expressions Primer 208/437



Regex:

    gr(a|e)y

• 

Matches:

    gray
    grey

• 

Doesn't Match:

    gry
    graey

• 

Example 3: Use parentheses and "|" to locate past correspondence in a mail−filtering program. This
regex finds a 'To:' or a 'From:' line followed by a space and then either the word 'Smith' or the word
'Chan'.

Regex:

    (To:|From:)(Smith|Chan)

• 

Matches:

    To:Smith
    To:Chan
    From:Smith
    To:Smith, Chan
    To:Smithe
    From:Channel4News

• 

Doesn't Match:

    To:smith
    To:All
    To:Schmidt

• 

Matching Sequences

You can build a regular expression to match a sequence of characters. These sequences, called "character
classes", simply place a set of characters side−by−side within square brackets "[]". An item in a character
class can be either an ordinary character, representing itself, or a metacharacter, performing a special
function. This primer covers how to build simple character classes, prevent matches with character
classes, and construct compound character classes with metacharacters.

Regular Expressions Primer 209/437



Building Simple Character Classes

The most basic type of character class is a set of characters placed side−by−side within square brackets
"[]". For example, the regular expression[bcr]at, matches the words "bat", "cat", or "rat" because it
uses a character class (that includes "b","c", or "r") as its first character. Character classes only match
singular characters unless a quantifier is placed after the closing bracket. For examples using quantifiers
with character classes, see Compound Character Classes. The following table shows how to use simple
character classes in regex searches.

Note: When placed inside a character class, the hyphen "−" metacharacter denotes a continuous sequence
of letters or numbers in a range. For example, [a−d] is a range of letters denoting the continuous
sequence of a,b,c and d. When a hyphen is otherwise used in a regex, it matches a literal hyphen.

Using simple character classes to perform regex searches.

Example 1: Use a character class to match all cases of the letter "s".

Regex:

    Java[Ss]cript

• 

Matches:

    JavaScript
    Javascript

• 

Doesn't Match:

    javascript
    javaScript

• 

Example 2: Use a character class to limit the scope of alternative matches on the words gray and grey.

Regex:

    gr[ae]y

• 

Matches:

    gray
    grey

• 

Doesn't Match:

    gry
    graey

• 

Example 3: Use a character class to match any one digit in the list.

Regular Expressions Primer 210/437



Regex:

    [0123456789]

• 

Matches:

    5 
    0
    9

• 

Doesn't Match:

    x
    ?
    F

• 

Example 4: To simplify the previous example, use a hyphen "−" within a character class to denote a
range for matching any one digit in the list.

Regex:

    [0−9]

• 

Matches:

    5
    0
    9

• 

Doesn't Match:

    234
    42

• 

Example 5: Use a hyphen "−" within a character class to denote an alphabetic range for matching various
words ending in "mail".

Regex:

    [A−Z]mail

• 

Matches:

    Email
    Xmail
    Zmail

• 

Doesn't Match:

    email

• 

Regular Expressions Primer 211/437



    mail

Example 6: Match any three or more digits listed in the character class.

Regex:

    [0−9]{3,}

• 

Matches:

    012
    1234
    555
    98754378623

• 

Doesn't Match:

    10
    7

• 

Preventing Matches with Character Classes

Previous examples used character classes to specify exact sequences to match. Character classes can also
be used to prevent, or negate, matches with undesirable strings. To prevent a match, use a leading caret
"^" (meaning NOT), within square brackets,[^...]. For example, the regex[^a] matches any single
character except the letter "a".

Note: The caret symbol must be the first character within the square brackets to negate a character class.

Using character classes to prevent a sequence from matching.

Example 1: Prevent a match on any numeric string. Use the "*" to match an item 0 or more times.

Regex:

    [^0−9]*

• 

Matches:

    abc
    c
    Mail
    u−see
    a4a

• 

Doesn't Match:• 

Regular Expressions Primer 212/437



    1
    42
    100
    23000000

Example 2: Search for a text file beginning with any character not a lower−case letter.

Regex:

    [^a−z]\.txt

• 

Matches:

    A.txt
    4.txt
    Z.txt

• 

Doesn't Match:

    r.txt
    a.txt
    Aa.txt

• 

Example 3: Prevent a match on the numbers "10" and "12".

Regex:

    1[^02]

• 

Matches:

    13
    11
    19
    17
    1a

• 

Doesn't Match:

    10
    12
    42
    a1

• 

Regular Expressions Primer 213/437



Compound Character Classes

Character classes are a versatile tool when combined with various pieces of the regex syntax. Compound
character classes can help clarify and define sophisticated searches, test for certain conditions in a
program, and filter wanted e−mail from spam. This section uses compound character classes to build
meaningful expressions with the regex syntax.

Using compound character classes with the regex syntax.

Example 1: Find a partial e−mail address. Use a character class to denote a match for any number
between 0 and 9. Use a range to restrict the number of times a digit matches.

Regex:

    smith[0−9]{2}@

• 

Matches:

    smith44@
    smith42@

• 

Doesn't Match:

    Smith34
    smith6
    Smith0a

• 

Example 2: Search an HTML file to find each instance of a header tag. Allow matches on whitespace
after the tag but before the ">".

Regex:

    (<[Hh][1−6] *>)

• 

Matches:

     <H1>
     <h6>
     <H3  >
     <h2    >

• 

Doesn't Match:

    <H1
    <   h2>
    <a1>

• 

Example 3: Match a regular 7−digit phone number. Prevent the digit "0" from leading the string.

Regular Expressions Primer 214/437



Regex:

    ([1−9][0−9]{2}−[0−9]{4})

• 

Matches:

     555−5555
     123−4567 

• 

Doesn't Match:

    555.5555
    1234−567
    023−1234

• 

Example 4: Match a valid web−based protocol. Escape the two front slashes.

Regex:

    [a−z]+:\/\/

• 

Matches:

    http://
    ftp://
    tcl://
    https://

• 

Doesn't Match:

    http
    http:
    1a3:// 

• 

Example 5: Match a valid e−mail address.

Regex:

    [a−z0−9_−]+(\.[a−z0−9_−]+)*@[a−z0−9_−]+(\.[a−z0−9_−]+)+

• 

Matches:

    j_smith@foo.com
    j.smith@bc.canada.ca
    smith99@foo.co.uk
    1234@mydomain.net

• 

Doesn't Match:

    @foo.com

• 

Regular Expressions Primer 215/437



    .smith@foo.net
    smith.@foo.org
    www.myemail.com

Character Class Summary

The following table defines various character class sequences. Use these alphanumeric patterns to
simplify your regex searches.

Character Class Description

[0−9] Matches any digit
from 0 to 9.

[a−zA−z] Matches any
alphabetic character.

[a−zA−z0−9] Matches any
alphanumeric
character.

[^0−9] Matches any
non−digit.

[^a−zA−z] Matches any
non−alphabetic
character.

Matching Locations within a String

At times, the pattern to be matched appears at either the very beginning or end of a string. In these cases,
use a caret "^" to match a desired pattern at the beginning of a string, and a dollar sign "$" for the end of
the string. For example, the regular expressionemail matches anywhere along the following strings:
"email", "emailing", "bogus_emails", and "smithsemailaddress". However, the regex^email only
matches the strings "email" and "emailing". The caret "^" in this example is used to effectively anchor
the match to the start of the string. For this reason, both the caret "^" and dollar sign "$" are referred to as
anchors in the regex syntax.

Note: The caret "^" has many meanings in regular expressions. Its function is determined by its context.
The caret can be used as an anchor to match patterns at the beginning of a string, for example:(^File).
The caret can also be used as a logical "NOT" to negate content in a character class, for example:
[^...].

Regular Expressions Primer 216/437



Using anchors to match at the beginning or end of a string.

Example 1: Use "$" to match the ".com" pattern at the end of a string.

Regex:

    .*\.com$

• 

Matches:

    mydomain.com 
    a.b.c.com

• 

Doesn't Match:

    mydomain.org 
    mydomain.com.org

• 

Example 2: Use "^" to match "inter" at the beginning of a string, "$" to match "ion" at the end of a string,
and ".*" to match any number of characters within the string.

Regex:

    ^inter.*ion$

• 

Matches:

    internationalization
    internalization

• 

Doesn't Match:

    reinternationalization

• 

Example 3: Use "^" inside parentheses to match "To" and "From" at the beginning of the string.

Regex:

    (^To:|^From:)(Smith|Chan)

• 

Matches:

    From:Chan
    To:Smith
    From:Smith 
    To:Chan 

• 

Doesn't Match:• 

Regular Expressions Primer 217/437



    From: Chan
    from:Smith
    To Chan

Example 4: Performing the same search as #3, place the caret "^" outside the parentheses this time for
similar results.

Regex:

    ^(From|Subject|Date):(Smith|Chan|Today)

• 

Matches:

    From:Smith
    Subject:Chan 
    Date:Today

• 

Doesn't Match:

    X−Subject:
    date:Today

• 

Searching and Replacing

Regular expressions are often used to search and replace text strings. Up until this point, the preceding
examples have centered on matching a string using regex syntax. This section examines the search and
replace operation as a prominent feature of regular expressions and solves standard problems using the
substitution syntax.

Like with building regular expressions, there are many variations on substitution syntax depending on the
language used. This primer focuses on general search and replace syntax. This standard syntax can be
later applied to the specific language, tool or application of your choice.

Building Simple Substitution Searches

Substitution searches search for and replace a pattern of text. Substitutions are performed using thes///
operator, "s" standing for substitution. Thes/// operator takes a regular expression between the first
and second front slashes, while the second and third front slashes take the replacement text.

For example:

s/<regex>/<substitution−string>/

Regular Expressions Primer 218/437



Use thes/// operator to search for and replace a simple text string. Note: these searches only replace
the first instance of the string found.

Example 1: Search for the string "email" and replace it with "e−mail".

Regex Substitution:

    s/email/e−mail

• 

Search for:

    email

• 

Replace with:

    e−mail

• 

Example 2: Search for an old domain name and replace it with the new domain name. Using regex
syntax, escape "." and "/" characters.

Regex Substitution:

    s/http:\/\/www\.old−domain\.com/http:\/\/www\/new−domain\.com/

• 

Search for:

    www.old−domain.com

• 

Replace with:

    www.new−domain.com

• 

Example 3: Search for a single string starting with any lowercase letter and ending with "mail". Replace
the string with "Email".

Regex Substitution:

    s/[a−z]mail/Email

• 

Search for:

    email
    zmail
    xmail

• 

Replace with:• 

Regular Expressions Primer 219/437



    Email

Modifying Substitution Searches

The previous substitution examples focused on small searches, such as replacing a single lower−case
word in a single line of text. Extend the scope and flexibility of substitution searches through the use of
modifiers. The modifier parameter is appended to the end of thes/// operator as follows:

s/<regex>/<substitution−string>/<modifier>

Use the modifier "i" to ignore case in alphabetic searches, "m" to allow multiple lines in a string, "s" to
treat a pattern as a single line, "x" to allow for whitespace and comments, and "g" for global searching all
occurances of the pattern in a file and not just the first instance found.

Use various modifiers with thes/// operator to search for and replace text strings.

Example 1: Using the "g" modifier, search globally through all .htm instances in a file and replace them
with ".html". Using "$", only substitute the ".htm" string when it appears at the end of a line. An example
file where this substitution succeeds:

/manual/mod_python/pythonapi.htm
/manual/mod_python/more−comp.htm
/manual/mod_python/overview.htm

Regex Substitution:

    s/\.htm$/\.html/g

• 

Search for:

    .htm

• 

Replace with:

    .html

• 

Example 2: Using the "g" modifier, remove all html tags in a file and replace the tags with an empty
string.

Regex Substitution:

    s/<[^>]+>//g

• 

Search for:• 

Regular Expressions Primer 220/437



    <code>Tag</code>

Replace with:

    Tag

• 

Example 3: Perform a case insensitive search for various instances of "login" and replace with the string
"password".

Regex Substitution:

    s/LOGIN/password/i

• 

Search for:

    LOGIN
    login
    LoGiN
    Login

• 

Replace with:

    password

• 

Substitution Modifier Summary

The following table defines various modifiers for the substitution operator. Modifiers change how a
match is performed. Use these modifiers to expand the scope and versatility of your substitutions.

Modifier Meaning

i Ignore case when matching
exact strings.

m Treat string as multiple
lines. Allow "^'' and "$'' to
match next to newline
characters.

s Treat string as single line.
Allow ".'' to match a
newline character.

x Ignore whitespace and
newline characters in the
regular expression. Allow

Regular Expressions Primer 221/437



comments. 

o Compile regular expression
once only.

g Match all instances of the
pattern in the target string.

More Regex Resources

Internet Web Sites:

Beginner:

Python Library Reference: Regular Expression Operations, ActiveState Programmer Network
(ASPN)

• 

Python Regular Expressions, Dive into Python, Mark Pilgrim• 
Python Cookbook, ActiveState Programmer Network (ASPN)• 
Five Habits for Successful Regular Expressions, The O'Reilly ONLamp Resource Center• 
Beginner's Introduction to Perl − Part 3, The O'Reilly Perl Resource Center• 

Intermediate:

Rx Cookbook, ActiveState Programmer Network (ASPN)• 
Regexp Power, The O'Reilly Perl Resource Center• 

Advanced:

Power Regexps, Part II, The O'Reilly Perl Resource Center• 

Regular Expressions Primer 222/437

http://aspn.activestate.com/ASPN/docs/ActivePython/2.3/python/lib/module-re.html
http://diveintopython.org/regular_expressions/
http://aspn.activestate.com/ASPN/Cookbook/Python
http://www.onlamp.com/pub/a/onlamp/2003/08/21/regexp.html
http://www.perl.com/pub/a/2000/11/begperl3.html
http://aspn.activestate.com/ASPN/Cookbook/Rx/
http://www.perl.com/pub/a/2003/06/06/regexps.html
http://www.perl.com/pub/a/2003/07/01/regexps.html


Komodo and the Perl Dev Kit
Komodo provides support for ActiveState's Perl Dev Kit, so that you can
build executable programs, ActiveX controls and Windows services in Perl.

After creating the desired Perl script in Komodo, select Tools|Build
Standalone Perl Application to configure the Perl application. The Build
Standalone Perl Application dialog box will open, giving you access to key
Perl Dev Kit tools from within Komodo.

PerlApp − Build an executable file from Perl scripts.• 
PerlCtrl − Build Active X controls from Perl scripts.• 
PerlNET − Create Perl components and applications that are
compliant with Microsoft's .NET Framework.

• 

PerlSvc − Convert Perl programs to Windows services.• 
PerlTray − Write system tray applications in Perl.• 

Note: On Linux, only the PerlApp tool is supported.

For complete instructions on building executables, controls and services in
Perl, see the User Guide that accompanies the Perl Dev Kit.

As you configure options on the tabs described in the sections below, the
corresponding command line string is displayed at the bottom of the Build
Standalone Perl Application dialog box. Command line options for PerlApp,
PerlCtrl, PerlSvc, PerlNET and PerlTray can be found in the User Guide that
accompanies the Perl Dev Kit. Alternatively, view the Perl Dev Kit User
Guide on ASPN, the ActiveState Programmer Network.

When using the PDK 'Build standalone application' feature in Komodo with
Perl 5.8.0 on a Linux installation where the environment is set to use UTF−8,
you must add a module 'utf8' on the modules tab. This is the equivalent of
'perlapp −−add utf8'. This does not affect Perl 5.6.x or future versions of Perl
5.8.1 or higher.

Once you have configured options using the tabs in the Build Standalone Perl
Application dialog box, use the buttons at the bottom of the dialog box to
create a build, add a script to the Toolbox, or debug a script in Komodo.

Add to Toolbox − Once you have created a new script, you can click
this button to add it to the Toolbox as a run command.

• 

Build − Click this button to create a new build or overwrite an
existing build.

• 

Debug − If the Komodo debugging option is selected on the General
tab, you can start the debugger by clicking this button.

• 

Feature Showcase

build a Perl
executable

• 

Komodo and the Perl Dev Kit 223/437

http://www.activestate.com/Products/Perl_Dev_Kit
http://aspn.ActiveState.com/ASPN/Perl/Reference/Products/ASPNTOC-PERLDEVKIT
http://aspn.activestate.com/ASPN/docs/ASPNTOC-PERLDEVKIT/


Configuring the General Tab

The build options for the Perl Dev Kit correspond with the tools described in the Perl Dev Kit
documentation, which contains detailed instructions on configuring Perl executables, services and
controls.

Enter the name of the script to build using the PDK − Use this field to enter the path and file
name of the source Perl script. This option is equivalent to the−script command line
argument.

• 

Build the script using − Select the type of output you wish to generate.• 
Enter the name of the target executable or control − Use this field to specify the path and name
of the output file. This option is equivalent to the−exe command line argument.

• 

Dependencies
None − Select this option to include all necessary files in the output file, so that it can be
run on systems that do not have Perl56.dll or ActivePerl. This option is equivalent to the
−freestanding command line argument.

♦ 

Perl Dll required on target − Select this option to reduce the size of the generated
executable by excluding Perl56.dll from the output file. Target systems must have the
Perl56.dll installed. This setting corresponds with the−xclude command line
argument.

♦ 

ActivePerl required on target − Select this option to create an output file that will be run
on systems where ActivePerl and any modules included viause and require
statements are installed. This option is equivalent to the−dependent command line
argument.

♦ 

• 

Verbose build information − This option will generate detailed output messages while the output
file is being built. This option corresponds to the−verbose command line argument.

• 

Hide console (for GUI applications) − Similar to running wperl.exe, this option is useful for
building applications that run in the background. This setting corresponds with the PerlApp
−gui command line argument, and is only available when you select the PerlApp tool.

• 

Overwrite existing build − Select this check box if you want the new build to replace the existing
build. If you attempt to overwrite a build without selecting this option, a pop−up dialog box will
warn that the .exe file already exists. You can then choose to overwrite the file, overwrite the file
and enable the check box, or cancel the command. This option is equivalent to the−force
command line argument.

• 

Delete temp files after each run − Freestanding Perl applications, services and controls
sometimes contain embedded DLLs that are extracted and cached in the host system's temporary
directory. Check this box to delete these files after each run. This setting corresponds with the
−clean command line argument.

• 

Debugging − To debug the Perl executable, control or service as it is being built, select the
desired debugger from the drop−down list. If you are not using either the Komodo or the PDK
debugger, you can specify a Hostname and Port for another debugger in the fields provided.

• 

Komodo and the Perl Dev Kit 224/437

http://aspn.ActiveState.com/ASPN/Perl/Reference/Products/ASPNTOC-PERLDEVKIT
http://aspn.ActiveState.com/ASPN/Perl/Reference/Products/ASPNTOC-PERLDEVKIT


Configuring the Modules Tab

The Modules tab is used for adding external modules to the build, as well as trimming unwanted
modules.

Specifying Extra Modules For Your Script

To add a module to the output program, enter the name of the module in the Module name field and
click Add. The new module to be added will be displayed in the list box above. Remove modules from
the list box using the Delete and Delete All buttons.

This option corresponds with the−add command line argument.

Specifying Modules to Trim from the Package

To remove an unwanted module from the build, enter the name of the module in the Modules field and
click Add. The new module to be trimmed will be displayed in the list box above. Remove modules from
the list box using the Delete and Delete All buttons.

This option corresponds with the−trim command line argument.

Configuring the Files Tab

The Files tab is used to add additional files (typically data files used by the embedded program) to the
output file that will be extracted when the program is run.

This option corresponds with the−bind command line argument.

Adding Files

To add a file to the output program, click Add. In the pop−up dialog box, enter the source location of the
file on your system, and the location where the file should be extracted when the output file is run.

Editing Files

To edit a file that has been added to the output program, click Edit. In the dialog box, as required, alter
the source location of the file on your system, and the location where the file should be extracted when
the output file is run.

Deleting Files

To remove a file that was to be added to the output program, click the file, then click Delete.

Komodo and the Perl Dev Kit 225/437



Configuring the Version Tab

The Version tab is used to embed version information in the output program. It corresponds to the
−info command line argument.

To alter any of the version options, select the desired option in the Version field column and enter the
desired value in the field below. This information will be assembled as a version information
(VERINFO) resource, and will be displayed to users when they view the properties for your script in
Windows Explorer.

Configuring the Library Paths Tab

You can use the Library Paths tab to add directories to your build. The options on the Library Path tab
correspond with the command line arguments−lib and −blib.

Specifying "lib" and "blib" Directories to Include

To add a lib or blib directory to include in your output file, Click Add. From the Browse for Folder
dialog box, select the directory path to include and click OK. The path can contain multiple directories
that are separated in the same way as in the PATH environment variable.

Use the Delete and Delete All to remove directories that you do not want to add from the "lib" and "blib"
list boxes.

Configuring the Extra Tab

The Extra tab is for adding icon files, as well as manually specifying any additional command line
arguments.

Specifying Icon files

To include .ico files in a build, Click Add. From the Add Icon dialog box, select the icon(s) you want to
add and click Open. The complete path for the icon file will be displayed in the Icon File list box.

This option is equivalent to the−icon command line argument.

Specifying Additional Command Line Parameters

If you want to specify any command line parameters in addition to those selected using the options in the
Build Standalone Perl Application dialog box, you can type them in the field provided.

Komodo and the Perl Dev Kit 226/437



Komodo and the Perl Dev Kit 227/437



Visual Package Manager (Komodo Pro)
The Visual Package Manager (VPM) is a graphical interface for the Perl
Package Manager (PPM), which is included with ActiveState's ActivePerl
distribution. VPM is used to install, upgrade and remove Perl modules from
your ActivePerl installation.

The VPM requires ActivePerl version 631 (which includes PPM version 3).
For more information about PPM, see the PPM documentation included with
your ActivePerl installation or on the ASPN Web site.

Repositories: the location of the collection of Perl modules. This can
be a website or a CD. Repositories are added, ordered or removed on
the Configure tab. Note that not all Perl packages have PPM
equivalents for every platform and Perl version. To check the build
status of a package, see ActiveState's ASPN website.

• 

Local Perl Installation Structure: the structure of the Perl installation
on your local system. More than one version of Perl may be installed.
During installation, you can specify the target for the package
installation.

• 

To launch the VPM, select Tools|Visual Package Manager, or click the VPM
button on the Toolbar.

Tutorials

Perl Tutorial• 

Installing New Modules

Use the Install page to search for Perl modules located on the selected Repository. See Searching for
Modules for a description of search syntax.

After you click the Search button, modules that match the search criteria will be displayed in a list in the
lower part of the screen. Note the buttons and keyboard shortcuts that can be used to quickly navigate the
list of packages.

Select the modules you want to install by clicking the check box to the left of the module list. Ensure that
the desired Perl installation is selected as the Target. Click Install to download and install the selected
modules.

Searching for Modules

The following examples describe the syntax for entering search strings:

Search for 'CGI' anywhere in the package name:

    CGI

Visual Package Manager (Komodo Pro) 228/437

http://www.activestate.com/Products/ActivePerl/
http://aspn.activestate.com/ASPN/Downloads/ActivePerl/PPM/
http://ppm.activestate.com
http://ppm.activestate.com


Sample results:

    Apache−CGI
    CGI−Application
    CGI−ArgChecker

Search for 'CGI' at the beginning of the package name:

    CGI*

Sample results:

    CGI−ArgChecker
    CGI−Application

Search for all modules authored by someone with 'smith' in their name or email address:

    AUTHOR=smith 

Sample results:

    Apache−ProxyPass
    Business−ISBN

Search for 'compress' anywhere in the package abstract:

    ABSTRACT=compress

Sample results:

    apache−GzipChain
    IO−Zlib

Search for 'CGI' in the name, or 'web' in the abstract:

    CGI or ABSTRACT=web

Sample results:

    CGI−XMLForm
    HTML−Clean

Search for 'XML' in the name and either 'parser' in the name or 'pars' in the abstract, but not with
'XPath' in the name:

    XML and (parser or ABSTRACT=pars) and not XPath

Sample results:

    XML−Node

Visual Package Manager (Komodo Pro) 229/437



    XML−Parser−EasyTree

PPM Server 3.0 repositories only: search by module name, even if unrelated to the containing
package:

    Data::Grove

Sample results:

    libxml−perl

Browse all packages in the repository:

    *

Sample results:

    Affix−Infix2Postfix
    AI−Fuzzy
    [many more...]

Upgrading Existing Modules

The Upgrade panel displays a list of all installed modules that have upgrades available on the selected
repository. All modules are initially selected.

Removing Installed Modules

The Remove page lists all installed modules. Modules can be selected for removal. If a module is a
prerequisite for another module, the former can only be removed if the latter is selected as well.

Modules considered precious are not listed, as they are necessary for VPM (and PPM) to function
correctly. It would not be possible to reinstall them (via VPM/PPM) once they are removed.

Configuring the VPM

The Configure page is used to add package repositories, and to view, enable, disable or re−order existing
repositories.

Visual Package Manager (Komodo Pro) 230/437



Adding a Repository

Name: enter a name by which this repository will be known.• 
Location: enter the URL where the repository is located.• 
Username: if the repository requires you to log in, enter your user name in this field.• 
Password: if the repository requires you to log in, enter your password in this field.• 
Repository Order: when you search for modules, repositories are searched in the order they
appear on this page. Specify where the new repository should be added to the existing repository
list.

• 

After configuring repository information, click Add to add the repository to the list.

Repositories are displayed in the bottom section of the Configure page.

Visual Package Manager (Komodo Pro) 231/437



Interpolation Shortcuts
Interpolation shortcuts are codes embedded in run commands, snippets or templates that, at "execution"
time, get replaced with values. For example, the path and name of the current file can be inserted via an
interpolation shortcut when a run command is executed.

Interpolation shortcuts embedded in run commands are inserted via the Run Command dialog box. When
using interpolation shortcuts in snippets or templates, insert the interpolation code using bracketed
syntax. Run commands can be stored in a project or the Toolbox for frequent use.

Interpolation Code List

The following table contains all of the interpolation shortcut codes available in Komodo.

Code Description

%
a literal percent sign (%); for example,Path = C:\temp; %%PATH%% inserts the
directory "temp" at the beginning of the PATH statement

f the basename of the current file

F the full path and name of the current file

L the line where the editing cursor is located within the current file

d the base directory of the current file

D the entire directory path of the current file

P the full path of the active project

p the directory path of the active project

w the word under the cursor in the editor

W
URL−escaped word under cursor; replaces characters that are not valid in a query string,
such as spaces and ampersands

s the current selection; interpolates the text that is currently selected in the editor

S
URL−escaped selection; replaces characters that are not valid in a query string, such as
spaces and ampersands

perl the perl interpreter specified in Komodo's Perl preference

php the php interpreter specified in Komodo's PHP preference

python the python interpreter specified in Komodo's Python preference

tclsh the tclsh interpreter specified in Komodo's Tcl preference

Interpolation Shortcuts 232/437



wish the wish interpreter specified in Komodo's Tcl preference

browser the browser specified in Komodo's Web Browser preference

guid a new GUID (Global Unique Identifier)

date * the current date

ask * ask the user for the value when invoked

path * special Komodo directories

pref * values from Komodo preferences

debugger
*

runtime properties of the debugger system

* Codes marked with asterisks have special options, not the options described in the Basic Interpolation
Options section. The options for these codes are described below.

Basic Interpolation Code Syntax

Interpolation code blocks come in two forms: bracketed and non−bracketed. Run commands use the
non−bracketed format. Snippets and templates use the bracketed format.

Non−Bracketed Syntax

The syntax for a non−bracketed interpolation code is:

%(<code><backref>:<options>...)

where <code> is one of the codes shown in the table above, <backref> is a number and <options>...
depend on the specific code. Back−references and options are discussed in separate sections. The
following are examples of non−bracketed interpolation code:

    %(perl)
    %w
    %guid2
    %(ask:Your Name:Trent Mick)

The parentheses are optional if the code block does not contain spaces. For example, the following two
commands are equivalent:

    %ask:Name:Trent

Interpolation Shortcuts 233/437



    %(ask:Name:Trent)

Bracketed Syntax

The syntax for a bracketed interpolation code is:

[[%(<code><backref>:<options>...)]]

where <code> is one of the codes shown in the table above, <backref> is a number and <options>...
depend on the specific code. Back−references and options are discussed in other sections. The following
are examples of bracketed syntax:

    [[%perl]]
    [[%w]]
    [[%guid2]]
    [[%ask:Your Name:Trent Mick]]

With bracketed interpolation codes, the parentheses are always optional. The double brackets enclose
spaces, making parentheses unnecessary. For example, both of the following commands are valid:

    [[%ask:Your Name:Trent Mick]]
    [[%(ask:Your Name:Trent Mick)]]

Bracketed interpolation code blocks permit some excess space immediately adjacent to the double
brackets. For example the following are equivalent:

    [[%ask:Your Name:Trent Mick]]
    [[ %ask:Your Name:Trent Mick]]
    [[%(ask:Your Name:Trent Mick) ]]
    [[ %(ask:Your Name:Trent Mick) ]]

Basic Interpolation Options

The following table shows the standard options available for most interpolation codes. These options do
not apply to the codes displayed with an asterisk in the Interpolation Codes table.

Option Syntax Description

orask %(<code>:orask:<question>)
If a value for code cannot be determined automatically, then the user is
prompted when the command is invoked. question is text that will be
displayed when the user is asked to enter a value.

Interpolation Shortcuts 234/437



else %(<code>:else:<default>)
If a value for code cannot be determined automatically, then the default is
used.

Date Code

A date interpolation code will be replaced with the current date, formatted according to a given optional
format or the default format.

Date Code Syntax

The syntax of the date code is as follows:

    %(date<backref>:<optional−format>)
    [[%(date:<optional−format>)]]

As noted in the Basic Interpolation Code Syntax section, the parentheses are optional. The <backref>
optional parameter is discussed in the Back−references section. The following examples are valid:

    %date
    [[%date]]
    %(date)
    %date:%H:%M:%S
    [[%date:%d/%m/%Y %H:%M:%S]]

Date Code Format Option

If no <optional−format> is specified in a date code, the default date format is used. Configure the default
date format using Komodo's Internationalization preferences.

If this format is not appropriate, you can specify the format with a string in accordance with the spec for
the "format" argument of Python's *time.strftime()* method [1]_. The table is reproduced here for
convenience.

Directive Meaning

%a Locale's abbreviated weekday name.

%A Locale's full weekday name.

%b Locale's abbreviated month name.

Interpolation Shortcuts 235/437



%B Locale's full month name.

%c Locale's appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24−hour clock) as a decimal number [00,23].

%I Hour (12−hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale's equivalent of either AM or PM.

%S Second as a decimal number [00,61].

%U
Week number of the year (Sunday as the first day of the week) as a decimal number
[00,53]. All days in a new year preceding the first Sunday are considered to be in
week 0.

%w Weekday as a decimal number [0(Sunday),6].

%W
Week number of the year (Monday as the first day of the week) as a decimal
number [00,53]. All days in a new year preceding the first Sunday are considered to
be in week 0.

%x Locale's appropriate date representation.

%X Locale's appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (or by no characters if no time zone exists).

%% A literal "%" character.

For more information about Python 2.2's time access and conversions, visit
http://www.python.org/doc/2.2/lib/module−time.html

Ask Code

An "ask" code will prompt the user for the value to use as its replacement. The user is prompted using a
pop−up dialog box. If a code snippet or run command includes more than one "ask" code, then the
pop−up dialog box will request values for all of these codes.

Interpolation Shortcuts 236/437

http://www.python.org/doc/2.2/lib/module-time.html


Ask Code Syntax

The "ask" code prompts users to enter input in the Interpolation Query dialog box before running a
command. The complete syntax for the %(ask) code is:

  %(ask[:NAME:[DEFAULT]])

...where "NAME" is an optional name to insert in the Interpolation Query dialog box and "DEFAULT" is
an optional default value that appears in the dialog box.

Use the%(...:orask) modifier with other interpolation codes to prompt for input if no value can be
determined. The syntax for a modified shortcut is:

  %(SHORTCUT:orask[:NAME])

...where "SHORTCUT" is the shortcut as displayed in the shortcut drop−down list and "NAME" is an
optional name to insert in the Interpolation Query dialog box. See the Run Command Tutorial for
examples of %(ask) and %(...:orask) shortcuts.

As noted in the Basic Interpolation Code Syntax section, usage of parentheses depends on the context.
The following examples are valid:

  %ask
  [[%ask:Name]]
  %ask:Name:Joe
  %(ask:What is Your Name:Joe Smith)

Ask Code Options

An "ask" code takes two optional parameters. The first, <optional−question>, is the text to display to the
user when prompting for the value for that code. The second, <optional−default>, is a default string to
preload the text entry field in which the user specifies a value. For example:

  %(ask<backref>:<optional−question>:<optional−default>)
  [[%(ask<backref>:<optional−question>:<optional−default>)]]

The <backref> optional parameter is discussed in the Back−references section.

The Query Dialog for "ask"−modified and "orask"−modified Codes

When a list of strings are interpolated using interpolation shortcuts, the user may be prompted to supply
values for certain codes. The user is asked via the Interpolation Query dialog box. This dialog will
contain one or more text entry fields with labels describing the data expected for that field. These labels
are determined from the specific interpolation code (both the "ask" code and the "orask" modifier include
an option to specify a label).

The label or question fields maintain recently−entered results that are displayed as a drop−down list of

Interpolation Shortcuts 237/437



matching recent entries.

Path Code

The "path" codes are used to provide special directory paths based on the installation of Komodo that is
currently running. These include such items as the common data directory, which may be necessary if
you are building run commands that you intend to work on shared files.

Path Code Syntax

The syntax of the path code is as follows:

    %(path<backref>:<pathName>)
    [[%(path<backref>:<pathName>)]]

Path Code Options

The path code takes one required parameter, "pathName". The pathName may be one of the following:

Path Name Meaning

userDataDir User−specific data directory where Komodo stores various information and files.

hostUserDataDir
The userDataDir contains some host−specfic directories. This is most common on
systems where user directories are shared and used from more than one computer.

commonDataDir
The common data directory contains data and files that are shared between
multiple users.

installDir This is the directory where Komodo is installed.

Debugger Code

The "debugger" codes are used to provide runtime values from the debugger subsystem in Komodo.
These codes can be used to provide debugging information to applications such as the PerlApp
component in ActiveState's Perl Developer Kit.

Debugger Code Syntax

The syntax of the debugger code is as follows:

Interpolation Shortcuts 238/437



    %(debugger<backref>:<value>)
    [[%(debugger<backref>:<value>)]]

Debugger Code Options

The debugger code takes one required parameter, "value". The value may be one of the following:

Debugger Value Meaning

address The hostname or address Komodo is running on.

port The TCP/IP port number that the debugger system is listening on.

proxyAddress The hostname or address of a debugger proxy that Komodo is using.

proxyPort The TCP/IP port number of a debugger proxy that Komodo is using.

proxyKey
A session key, typically retrieved from the USER environment variable, that
the proxy uses to match debug sessions with a specific running instance of
Komodo.

Pref Code

This is a very advanced feature and is subject to change in future versions of Komodo.

The "pref" codes are used to provide values from Komodo's preferences, which are configured in the
Preferences dialog box (Edit|Preferences). Komodo's preference system is undocumented, but you may
examine your preference settings in the file "prefs.xml" located in your user data directory
(~./komodo/VERSION on linux, C:\Documents and Settings\USERNAME\Application
Data\ActiveState\Komodo\VERSION on Windows).

Pref Code Syntax

The syntax of the pref code is as follows:

    %(pref<backref>:<prefName>)
    [[%(pref<backref>:<prefName>)]]

Preference names may change between versions of Komodo.

Interpolation Shortcuts 239/437



Back−References

Back−references are particularly useful for code snippets. You can use back−references to interpolate the
same value any number of times in the snippet. Back−references make it possible to prompt the user for
an input value only once, and then insert that value multiple times. For example, you could create a
snippet that prompts for a value, which would then be entered at various places in the snippet text.
Without back−referencing, the user would be prompted as many times as there were instances of the
interpolation in the snippet.

Back−Reference Syntax

You create a back−referenced set of codes by suffixing an interpolation code with a number. The syntax
for back−reference is as follows:

    %(<code><backref>:<options>...)
    [[%(<code><backref>:<options>...)]]

For example:

    %(ask1:Name:Trent)
    %w1:else:Foo
    [[%guid1]]

All interpolation code blocks with the same code name and reference number are part of the same
back−reference set. All members of the same back−reference set will be replaced with the first code
block in that set. For example, consider this run command:

    echo Hi there %(ask1:Name:Trent). That name again is %ask1

This would generate a Query dialog prompting for one entry, "Name", with a default of "Trent".
Whatever value the user entered for "Name" would then be inserted in two places in the command,
resulting in the following command:

    echo Hi there Bill. That name again is Bill

Another useful application of back−references is the "guid" code. A guid code is replaced with a new
GUID (Globally Unique Identifier). Sometimes it is desirable to have the same GUID inserted in more
than one place in a file. In snippets, this can be done by using a code "%guid1" instead of just "%guid"
wherever you want the GUID inserted.

Interpolation Shortcuts 240/437



Customizing Komodo
Komodo's preferences are used to set the default behavior of Komodo. Preferences can be set for various
aspects of Komodo functionality, such as editor behavior, preferred language interpreters, the Komodo
workspace layout, etc.

Some preferences can also be configured on a per−file basis. For example, the configuration of line
endings, indentation style and word wrap can be configured for individual files. File−specific settings
override the default preferences described in this section. To configure file−specific defaults, see File
Properties and Settings in the File section of the Komodo documentation.

Appearance Preferences

Use the Appearance preferences to customize the default layout of the Komodo workspace. The
functions described below can also be changed using keyboard shortcuts; see Key Bindings for more
information. To customize the Komodo workspace, select Edit|Preferences|Appearance. Configure the
following options:

Toolbar Configuration

Show button text: Descriptive text displayed beneath toolbar icons.• 
Show standard toolbar: Toolbar with commonly used functions, for example, Open and Save.• 
Show debug toolbar: Toolbar with debugging functions, for example, Step Over and Step
Through.

• 

Show source code control toolbar: Toolbar with source code control functions, for example,
Update and Revert.

• 

Show macro toolbar: Toolbar containing commands for recording macros.• 

Initial Page Configuration

Show Komodo Start Page on startup: Select to display the Start Page in the Editor Pane when
Komodo launches.

• 

Hide Tutorials Pane: Select to hide the Tutorials section of the Komodo Start Page.• 
Hide Quick Links Pane: Select to hide the Quick Links section of the Komodo Start Page.• 
Hide Tip of the Day Pane: Select to hide the Tip of the Day section of the Komodo Start Page.• 

Most Recently Used

Number of Projects: The number of projects displayed on Komodo's Start Page, and on the
Recent Projects menu.

• 

Number of Files: The number of files displayed on Komodo's Start Page, and on the Recent
Files menu.

• 

Customizing Komodo 241/437



Code Intelligence Preferences

Use the Code Intelligence preferences to enable the Code Browser, Object Browser, and Python
AutoComplete and CallTips functionality. Also, run wizards to scan language installations and custom
directories to build the Code Intelligence database. To configure Code Intelligence preferences, select
Edit|Preferences|Code Intelligence.

Code Intelligence: Enables or disables code intelligence functionality (Code Browser, Object
Browser, CallTips, and AutoComplete). Select the check box to enable Code Intelligence
(enabled by default). De−select the check box to disable Code Intelligence. Click OK to save
changes.

• 

Scan language installations: A wizard that scans specified language installations to update the
Code Intelligence database. An updated database increases the accuracy of Code Intelligence
features (for example, the Object Browser). Note that Python requires this database for CallTips
and AutoComplete to operate fully. To run the wizard:

• 

Click Scan language installations to start the wizard.1. 
Select the languages you wish to use with Code Intelligence, and then click Next.2. 
Verify that the listed languages are correct. If correct, click Build Now to construct the
Code Intelligence Database. Building the database may take several minutes, depending
on the number of languages selected. (Alternatively, Click Back to edit the language list.
Click Cancel to exit the wizard.)

3. 

Click Finish to exit the wizard.4. 
Scan custom directories: A wizard that scans specified directories to update the Code
Intelligence database. An updated database increases the accuracy of Komodo Code Intelligence
features. To run the wizard:

• 

Click Scan custom directories to start the wizard.1. 
Click Add directory to browse for and select the directory to add. Repeat to add further
directories. Click Next.

2. 

Verify that the listed directories are correct. If correct, click Build Now to construct the
database. Building the database may take several minutes, depending on the number of
directories selected. (Alternatively, Click Back to edit the directory list. Click Cancel to
exit the wizard.)

3. 

Click Finish to exit the wizard.4. 
Enable automatic AutoComplete and CallTip triggering while you type: Access AutoComplete
and CallTip functionality while programming in Komodo. Select the check box to enable
automatic triggering (enabled by default). De−select the check box to disable automatic
triggering. Click OK to save changes.
Note that AutoComplete and CallTips can be manually invoked via the associated key binding
when the cursor is placed on the code fragment in the editor.

• 

Enable re−scanning of the current file while editing: Background file scanning updates the
Code Intelligence database while a file is being edited. Select the check box to enable
re−scanning (enabled by default). De−select the check box to disable file background scanning.
Click OK to save changes.
Note that scanning may be CPU intensive for large files. If slowdowns are experienced, disable
this feature and use Refresh Status (File|Refresh Status) to manually re−scan the current file
and to update the Code Intelligence database.

• 

Customizing Komodo 242/437



Debugger Preferences

To customize general debugging functions, select Edit|Preferences|Debugger. For language−specific
settings (such as interpreter selection), see the Language preference.

Debugging Session Startup

When starting a new debug session: Specify whether Komodo should Ask me what files to save
(which displays a list of changed files); Save all modified files (whereby all modified files are
automatically saved); or Save no files (whereby the debugging session starts without saving any
files).

• 

When receiving a remote debugging connection: Specify whether Komodo should Ask me to
allow connection (Komodo prompts to allow the connection request); Allow the connection
(Komodo accepts the connection without prompting); or Refuse the connection (Komodo
refuses the connection without prompting).

• 

Skip debugging options dialog: To block the display of the debugger dialog box when the
debugger is invoked, check this box. Using the 'Ctrl' key in conjunction with a debugger
command key toggles the value specified here. However, commands invoked from the Debugger
drop−down menu always use the convention specified here.

• 

Debugging Session Shutdown

Confirm when closing debugger session tab: If the debugger is running when you attempt to
close the Debug tab, this check box determines whether you are prompted to halt the debug
session and close the tab, or whether this happens without prompting.

• 

Debugger Connection Options

Listen for debug connections on port: The port Komodo listens on for debugger sessions. The
default is 9000. Set the port to 0 to use a free port provided by the system. On multi−user
systems where multiple instances of Komodo are running, using port 0 to select a
system−specified port prevents you from having to change the port specification from one
debugging session to the next.

• 

Enable Debugger Proxy: Select this check box to enable a debugger proxy.• 
Proxy Listener Address: The address of the proxy Komodo uses to listen for connections. It
supports remote debugging on a multi−user system. By default, the DBGP Proxy uses port 9000
to listen for remote debuggers and port 9001 to listen for connections from Komodo. The proxy
must be started separately at the command line.

• 

Proxy Key: In a multi−user system, the key identifies which instance of Komodo requires the
connection. By default, set to the USER or USERNAME environment variables on the system
where Komodo is running.

• 

Try to find files on the local system when remote debugging: By default, when Komodo
performs remote debugging, it retrieves a read−only copy of the file to be debugged from the
debug engine. When this check box is selected, however, Komodo first searches for the debugger

• 

Customizing Komodo 243/437



file on the local system. While it is probably safe to leave this check box selected for all of your
remote debugging, there is a slight possibility that Komodo retrieves the wrong file if remote
debugging is performed on another machine. If, by chance, there is a file on your local system
with the same name and location as the file on the remote system, Komodo uses the local file.
This would only happen if the names and locations were identical (e.g., if both machines
contained a file called "C:\foo\bar\baz.pl").

Editor Preferences

To configure editing preferences, select Edit|Preferences|Editor.

General Preferences

Show whitespace characters: Display or hide whitespace characters in the editor. Spaces are
displayed as dots; tab characters appear as right arrows.

• 

Show end−of−line characters: This option sets the default for displaying end of line markers.
Display can also be toggled using the View|View EOL Markers menu option.

• 

Show line numbers: This option sets the default for displaying line numbers. If enabled, line
numbers are displayed on the left side of the Editor Pane. Line numbers can also be toggled
using the View|View Line Numbers menu option.

• 

Options set through the Preferences dialog box are the default for all files opened in Komodo. Some
display characteristics can be assigned to individual files.

Confirmation Dialogs

When files that are opened in the Komodo editor are changed by another application, Komodo can be
configured to respond in various ways:

Detect when files are changed outside the environment: When this option is enabled, Komodo
pays attention to changes made to files outside the Komodo environment.

• 

If files have been changed: When files are changed outside Komodo, select whether Komodo
should Ask me what files to reload (prompt for reload confirmation); Reload all files (reload
without prompting); or Reload no files (do nothing).

• 

If files have been deleted: When files are deleted outside Komodo, select whether Komodo
should Ask me what files to close (prompt for close confirmation); Close all files (close without
prompting); or Close no files (do nothing).

• 

If Ask me what files to reload Ask me what files to close are selected, the prompt is displayed when:

changing between tabs in the editor• 
switching back to Komodo from another application• 
saving a file• 
deleting a file• 

Customizing Komodo 244/437



Scrolling

The Scrolling setting determines the number of lines that are be displayed above or below the editing
cursor. As the editing cursor moves, the number of lines specified here are displayed between the cursor
and the top or bottom of the Editor Pane. You can also set the horizontal scroll bar width by entering the
desired size in pixels.

Incremental Search

These options set the defaults for the Incremental Search feature.

Matches Case: Specify whether Incremental Search should be case sensitive.• 
Uses: Specify the search syntax type. Plain Text exactly matches the search string; Regular
Expressions interprets the search text as a regular expression; Wildcard interprets asterisk and
question mark characters as wildcards.

• 

Configuring Key Bindings

Most Komodo functions can be invoked via key bindings. These key bindings can be customized. To
view an HTML list of the key bindings currently in effect, select Help|List Key Bindings. Refer to the
Key Binding List for a list of the default key bindings.

On Unix systems, key bindings defined in the window manager (including default key bindings) take
precedence over Komodo key bindings. If certain keys or key combinations do not work as expected in
Komodo, check the window manager's key binding scheme. In the case of conflicts, change either the
Komodo key bindings or the window manager key bindings.

To configure key binding defaults, select Edit|Preferences|Editor|Key Bindings. By default, menu key
bindings are accessed using 'Alt' key combinations. For example, the File menu is opened via 'Alt'+'F'.
Select Remove Alt−<letter> shortcuts from menus to disable menu access via these key bindings. The
'Alt' key still activates the File menu.

Key Binding Schemes

Key binding "schemes" are sets of pre−configured key bindings. The Default scheme is consistent with
common Windows key bindings. The Emacs scheme contains many of the key bindings associated with
the Emacs editor. The Emacs scheme is not a comprehensive set of Emacs key bindings. Only the most
commonly used Emacs functions are included. Some of the default Emacs key bindings use 'Alt' key
combinations that are also used to access Komodo menus. To disable the menu access, select Remove
Alt−<letter> shortcuts from menus.

Pre−configured schemes cannot be modified. When you attempt to modify a key binding, you are
prompted to make a copy of the scheme before making changes.

Customizing Komodo 245/437



Modifying Key Bindings

To alter or view a specific key binding, scroll the Commands list or enter characters in the filter field. If
multiple key bindings are assigned to a single command, the Current Key Sequence field displays as a
drop−down list. Click the Clear button to delete the key binding displayed for the selected command;
click Clear All to delete all key bindings for the selected command.

To add a new key binding for the selected command, enter the desired key binding in the New Key
Sequence field. If the key sequence is already assigned to another command, the current assignment is
displayed in the Key Sequence Already Used By field. Click Change to update the key binding displayed
in the Current Key Sequence field; click Add to make the new key binding an additional key binding. If
the key binding is already assigned, the original assignment is cleared.

Key Bindings for Custom Components

Custom key bindings can be assigned to the following types of components:

Open Shortcuts• 
URLs• 
Run Commands• 
Macros• 
Snippets• 
Templates• 

When the key binding associated with a component is invoked, it has the same action as double−clicking
the component in the Toolbox or Project Manager.

To assign a key binding to a component, or to alter or delete an existing key binding, right−click the
desired component in the Toolbox or Project Manager to display the Properties dialog box, then click the
Key Binding tab. Configure as described above.

Configuring Indentation

From the Edit menu, select Preferences, then click Editor|Indentation.

Auto−Indent Style: Choose from one of three indentation styles:
Use Smart Indent: Komodo automatically anticipates logical indentation points, based
on language cues (such as open braces).

♦ 

Indent to first non−empty column: Komodo maintains the current level of indentation.♦ 
Don't auto−indent: Select to prevent all forms of automatic indentation.♦ 

• 

Auto−adjust closing braces: Komodo automatically aligns closing braces with corresponding
opening braces.

• 

Show indentation guides: Select to display indentation markers (grey vertical lines). An
indentation marker is displayed every time the number of spaces on the left margin equals the

• 

Customizing Komodo 246/437



value specified in the Number of spaces per indent field.
Allow file contents to override Tab settings: If selected when files are open, Komodo uses the
indentation settings saved in the file, possibly overriding the other preferences. If de−selected,
Komodo uses the preference configuration regardless of the indentation values in the file.

• 

Prefer Tab characters over spaces: Komodo displays Tab characters wherever possible,
according to the values specified in the Number of spaces per indent and the Width of each Tab
character fields. When the 'Tab' key is pressed, Komodo inserts indentation up to the next indent
width. If the new indentation is a multiple of the Tab width, Komodo inserts a Tab character.
Example: With a Tab width of 8 and an indent width of 4, the first indent is 4 spaces, the second
indent is a Tab character, and the third indent is a Tab character plus 4 spaces.

• 

Tab and indent widths are specified as follows:

Number of spaces per indent: Number of spaces Komodo inserts on the left margin when
indenting a line of code.

• 

Width of each Tab character: Number of spaces that are equal to a Tab character.• 
Fold mark style: Use the drop−down list to select the style of node used in code folding.• 
Use horizontal line on folds: Displays collapsed code with fold marks; a thin line also spans the
width of the Editor Pane.

• 

'Backspace' decreases indentation in leading whitespace: If this option is enabled, pressing
'Backspace' clears an entire indentation, rather than a single space, if there is nothing between the
editing cursor and the left margin. For example, if the number of spaces per indent is set to four,
and there are five spaces between the left margin and the editing cursor, pressing 'Backspace'
once clears one space; pressing 'Backspace' a second time clears four spaces.

• 

Restore fold state on document load (slows down file opening): If this option is enabled, the
current state of code folding is remembered when a file is closed, and reinstated when the file is
next opened.

• 

Options set through the Preferences dialog box are the default for all files opened in Komodo. Some
indentation characteristics can be assigned to individual files.

Smart Editing

Background Syntax Checking

Background syntax checking validates code against the language interpreter as you type. (If Code
Intelligence is enabled for Python, the code intelligence database is used to validate Python code.) Syntax
errors and warnings are underlined in the Editor Pane. See Background Syntax Checking for more
information.

To turn background syntax checking on or off, select Preferences|Editor|Smart Editing.

The level of background syntax checking for Perl is determined by the setting on the Perl Language
preference page.

Customizing Komodo 247/437



Configuring Word Completion

The Komodo editor maintains an index of words in the current file. Instead of re−entering words that
already exist in the current file, you can use the Complete Word function to finish words. If you are using
the default key binding scheme, word completion is invoked from the keyboard by pressing
'Ctrl'+'Space'. To configure Komodo to invoke word completion with the 'Tab' key, select the check box
labeled Use tab character to complete words like Ctrl+Space.

Configuring Word Wrap

If word wrap is enabled, lines are automatically "wrapped"; that is, when a line exceeds the width of the
Editor Pane it wraps to the next line. This is merely a display characteristic − no end−of−line marker is
inserted. Use the Word wrap long lines option to configure this behavior.

Note: For lines that have been wrapped automatically, the behavior of the 'Home' and 'End' keys is
slightly different. Pressing 'Home' or 'End' moves the cursor to the beginning or end of the current line.
Pressing the same key a second time moves the cursor to the previous or next end−of−line marker.

Configuring Edge Lines

The edge line is a vertical line that indicates a column marker.

Show edge line / Highlight characters beyond edge line: Select to show where the line wraps,
and to highlight characters beyond the wrap column. With fixed−width fonts, a line is drawn at
the column specified. With proportional−width fonts, those characters beyond the specified
column are drawn on a colored background. The line or background color is configured on the
Fonts and Colors preference page.

• 

Edge line column: Specify the column position of the vertical marker.• 

Options set through the Preferences dialog box are the default for all files opened in Komodo. Some
Smart Editing features can be assigned to individual files.

Save Options

To automatically fix whitespace errors when saving files:

Clean trailing whitespace and EOL markers: Eliminates unnecessary empty space between text
and EOL markers, and fixes inappropriate EOL markers.

• 

Customizing Komodo 248/437



Ensure file ends with EOL marker: Adds an EOL marker to the last line in a file if one does not
already exist.

• 

Based on the specified Minutes between auto−save, Komodo saves backup copies of all files open in the
editor. When Komodo is shut down normally, the backup copies are deleted. If Komodo is shut down
abnormally (such as through a system crash), Komodo prompts to restore the backup copy when the file
is next opened. If you respond "Yes", the backup copy of the file, rather than the (older) disk copy, is
opened in the editor.

When files without extensions are saved, Komodo can be configured to prompt for an action. Configure
the If filename has no extension drop−down list:

Ask me what to do: Komodo prompts you with a dialog box to decide what to do when a
particular file is saved without an extension.

• 

Add appropriate extension: Komodo automatically adds an extension based on file content.• 
Leave filename alone: Komodo does nothing when a file is saved without an extension.• 

File Associations

Komodo's file associations determine the functionality of editing features such as AutoComplete and
code coloring. Use the File Associations preference to associate file extensions and characteristics with
particular languages.

Editing the Language Associated with a File Pattern

To edit the language associated with a file pattern:

Select the desired extension from the Patterns list.1. 
From the Language drop−down list, select the language to associate with the selected file
pattern.

2. 

To remove an association, select the desired pattern and click Remove.

Adding a New File Association

To add a new file pattern/language association:

Enter the desired pattern in the Pattern field. The pattern consists of the wildcards and the
naming convention. Typically, file associations are made by the filename extension; for example,
a Perl script has the extension ".pl". The pattern for a Perl script is therefore "*.pl".

1. 

Select the language to associate with the pattern from the Language drop−down list.2. 

Use File Content to Determine Language

Customizing Komodo 249/437



Komodo can be configured to identify the language of a file based on its contents rather than its
extension. The following characteristics can be used to override the file associations settings for syntax
checking and debugging configuration.

XML Declarations: The Use XML Declarations option checks for XML declarations that
specify the language of a file (e.g. <!DOCTYPE html PUBLIC "−//W3C//DTD XHTML 1.0
Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1−strict.dtd"> for XHTML 1.0).

• 

Shebang (#!...) Line: The Use shebang line option checks for a "#!/..." line at the top of a file
that specifies the interpreter (e.g.#!/usr/bin/perl).

• 

Emacs−Style Mode Variable: When this check box is selected, as Komodo opens files, it checks
for an embedded Emacs "mode" specification used to set the syntax checking and debugging
configuration.

• 

Fonts and Colors Preferences

Komodo's Fonts and Colors Preference is used to customize the display of text in the Editor Pane. To
modify the font and color preferences, from the Edit menu, select Preferences, then click Fonts and
Colors.

The Sample Text window at the top of the Fonts and Colors page offers a preview of the current scheme.
If multiple schemes are configured, select the desired scheme from the Scheme drop−down list.

To create a new scheme:

Select the scheme that you want to base your new scheme upon.1. 
Click the New button and enter a name for the new scheme.2. 
Make any necessary changes using the controls on the Fonts, Colors, Common Syntax Coloring,
and Language−Specific Coloring tabs.

3. 

Click OK to save the new scheme.4. 

Schemes are added to the Scheme drop−down list. Remove the selected scheme by clicking the Delete
button. System schemes appear in bold and cannot be deleted.

Fonts

The Fonts tab is used to configure the display characteristics for fixed−width and/or proportional fonts.
Note that the default font characteristics configured on this tab are not overridden by any
language−specific font configurations.

To create a scheme that affects characters in specific encodings, select the type of encoding from the
Encoding drop−down list. If you do not specify the encoding, Komodo uses the system's default
encoding.

Customizing Komodo 250/437



The Fonts tab contains two identical sets of font controls, one for fixed−width fonts, and the other for
proportional fonts. Select the Prefer Fixed or Prefer Prop. option button to set the desired font type and
associated settings.

Font: Select specific fixed−width or proportional fonts from the drop−down lists. (On Linux and
Solaris, the same list of fonts is displayed in both drop−down lists. On GTK, there is no
programmatic way to identify whether a font is proportional or not; therefore, you must know the
properties of the individual fonts when modifying these values.)

• 

Font Size: Select the size of the font from the drop−down list.• 
Bold: If you want the default font to be displayed in bold, click the "B".• 
Italic: If you want the default font to be displayed in italics, click the "I".• 
Font Color: Set the font color by clicking on the "Fore" color box. Select the desired color from
the color picker dialog box. Click the small arrow button to set the font color using the system
color palette.

• 

Background Color: Set the background color for the Editor Pane by clicking on the "Back" color
box. Select the desired color from the color picker dialog box. Click the small arrow button to set
the background color using the system color palette.

• 

Reset: Click this button to return the font and color preferences to Komodo's original, default
settings.

• 

Colors

Use the Color Choice drop−down list on the Colors tab to configure general color properties for the
Editor Pane. After selecting an interface component from the list, click the box to the right of the
drop−down list to choose a color from the color palette, or click the small arrow button to select a color
from the system color palette.

The following interface elements can be configured:

Current Line Background Color: The color configured here does not take effect unless the
Highlight Current Line check box is selected. This sets the highlighting color of the line in
which the editing cursor is positioned.

• 

Cursor Color: Sets the color of the editing cursor.• 
Selection Background Color: The background of text that has been selected in the Editor Pane
(by double−clicking, or clicking and dragging), is colored according to this setting.

• 

Selection Text Color: This option is only available if the Override Text Color in Selection check
box is selected. Regardless of other color configurations, all text that has been selected in the
Editor Pane (by double−clicking, or clicking and dragging), is displayed in the color specified in
this setting.

• 

Active Breakpoints Color: Sets the color of the breakpoint at which the debugger is currently
stopped.

• 

Pending Breakpoints Color: Sets the color of breakpoints at which the debugger has yet to stop.• 
Bookmark Color: Sets the color of the bookmarks that are inserted in the margin to the left of the
Editor Pane.

• 

Customizing Komodo 251/437



Debugger Current Line Background Color: Sets the background color of the line highlighted by
the debugger.

• 

Debugger Calling Line Background Color: Sets the color of lines that call subroutines. Caller
line coloring is applied only when you have changed the stack position to view the line that calls
the current line. View caller lines in the Call Stack drop−down list box on the Variables tab on
the Debug tab.

• 

Edge Line/Background Color of Text Too Far: If Word Wrap is enabled, use this option to set
the color of the word wrap column marker, as well as the highlighted characters beyond the wrap
column. If using fixed−width fonts, a line is drawn at the specified column. If using a
proportional−width font, characters beyond the specified column are drawn on a colored
background.

• 

The Override Text Color in Selection check box activates the "Selection Text Color" setting described
above. The Highlight Current Line check box activates the coloring specified in the "Current Line
Background Color" setting described above.

Common Syntax Coloring

Some language elements are common to a number of programming languages. The element colors
specified on the Common Syntax Coloring tab applies to all languages that use these elements. Select an
element from the Element Type drop−down list and use controls described below to set the font
characteristics. Note that the font characteristics configured on this tab are overridden by any
language−specific font configurations.

Face: Select the typeface of the font from the drop−down list. You can choose either
"Fixed−width" or "Proportional".

• 

Size: Select the size of the font from the drop−down list.• 
Bold: If you want the default font to be displayed in bold, click the "B".• 
Italic: If you want the default font to be displayed in italics, click the "I".• 
Font Color: Set the font color by clicking on the foreground color box. Select the desired color
from the color picker dialog box, or click the small arrow button to select a color from the system
color palette.

• 

Background Color: Set the background color for the Editor Pane by clicking on the background
color box. Select the desired color from the color picker dialog box, or click the small arrow
button to select a color from the system color palette.

• 

Reset: Click this button to return the font and color preferences to Komodo's original, default
settings.

• 

Language−Specific Coloring

The colors configured on the Language−Specific Coloring tab apply to elements that appear in a specific
language. Select a language from the Language drop−down list and an element from the Element Type

Customizing Komodo 252/437



drop−down list, then use the controls described below to set the font characteristics.

Face: Select the typeface of the font from the drop−down list. You can choose either
"Fixed−width" or "Proportional".

• 

Size: Select the size of the font from the drop−down list.• 
Bold: If you want the default font to be displayed in bold, click the "B".• 
Italic: If you want the default font to be displayed in italics, click the "I".• 
Font Color: Set the font color by clicking on the foreground color box. Select the desired color
from the color picker dialog box, or click the small arrow button to select a color from the system
color palette.

• 

Background Color: Set the background color for the Editor Pane by clicking on the background
color box. Select the desired color from the color picker dialog box, or click the small arrow
button to select a color from the system color palette.

• 

Reset: Click this button to return the font and color preferences to Komodo's original, default
settings.

• 

GUI Builder Preferences

To set the default language for GUI Builder projects, select it from the drop−down list. If Ask each time
is specified, Komodo prompts every time the GUI Builder is invoked.

Komodo communicates with the GUI Builder using the port indicated in the TCP/IP Port used field.
Alter the port number as desired.

Interactive Shell Preferences

The Interactive Shell is an implementation of the language interpreter's shell within the Komodo
environment. These preferences set the default behavior for interactive shell functionality.

Preferred Language: Specify which language interpreter's shell is launched when the interactive
shell is invoked.

• 

Session Control:
Close tab when interactive shell session ends: If this option is selected, the Shell tab
closes when the Stop button is clicked. Otherwise, the tab remains visible (although you
must invoke another interactive shell session to use the shell).

♦ 

Confirm when closing interactive shell: When you attempt to close the Shell tab before
stopping the session (by clicking the Stop button), this option determines whether you
are prompted for confirmation. The confirmation dialog box has an option to disable the
warning; to re−enable the warning, set this field to Ask me each time.

♦ 

• 

Working Directory: This option sets the "current" directory for the interactive shell session.
Specify the desired directory.

• 

Customizing Komodo 253/437



Internationalization Preferences

Language encodings provide support for files containing characters in non−ASCII character sets.

Encodings are determined in the following order:

File Preference: If a specific encoding has been assigned to a file via the file's Properties and
Settings context menu, the assigned encoding is always used when that file is opened.

1. 

Auto−Detect: If the Auto−Detect File Encoding when Opened box is checked, Komodo
analyzes the existing encoding of the file by first looking for a Byte Order Marker (BOM), then
by checking for an XML declaration, and then by performing heuristic analysis on the file's
contents. If an encoding can be determined, it is applied.

2. 

Language−specific Default Encoding: Specific encodings can be assigned to programming
languages. (Komodo determines the programming language of a file based on the File
Association preferences.) If an encoding is associated with a programming language, that
encoding is used. Check Signature (BOM) to embed a Byte Order Marker (BOM) at the
beginning of the file. If the specified encoding is set to the default encoding, the System
Encoding or Custom Encoding is used.

3. 

System Encoding or Custom Encoding: If the Use Encoding Defined in Environment box is
checked, Komodo uses the encoding specified in the operating system. The following system
variables are checked:

Windows: The Control Panel's "Regional Settings" (Windows 98, ME, and NT);
"Regional Options" (Windows 2000); "Regional and Language Options" (Windows XP).

♦ 

UNIX: LC_CTYPE,LANG andLANGUAGE.♦ 
To use a different encoding, uncheck this box and select the desired encoding from the Custom
Encoding drop−down list.

4. 

When you create a new file, only the third and fourth methods described above are used to set the file's
encoding.

The following settings override all other encoding settings except the File Preference setting.

Allow XML Declaration to Override Auto−Detection: Komodo always uses the XML encoding
declaration contained in the XML file when opening XML files (if applicable).

• 

Allow HTML META tag to Override Auto−Detection: Komodo uses thecharset setting
defined in META tags in HTML documents.

• 

Allow 'coding:' tag to Override Auto−Detection: If the file contains a
"coding: <encoding_name>" directive within the first two lines, that encoding is used.

• 

The Date & Time format determines the display format of the date and time for items listed on the Start
Page, and for the Current File settings display.

Customizing Komodo 254/437



Language Help Settings

Use the Language Help page in Komodo Preferences (Edit|Preferences|Language Help) to configure
context−sensitive language look−up.

Configuring Reference Locations

The Language Lookup Commands section of the Language Help page displays the default URL for
language−specific help. (The%(browser) string is an interpolation shortcut.) If you are using the
default key binding scheme, 'Shift'+'F1' opens a browser window and looks up the address of the sites
specified here. The site is selected according to the type of file currently active in the Editor Pane. (To
configure file association, see File Associations.)

The General Help field is used to specify a help location that does not specifically apply to a language
(or applies to a language not available in the above list).

To reset any of the help settings to their original value, click Reset beside the pertinent field.

Using Language Help

In the Editor Pane, double−click to select the keyword that you want to look up. Then, if you are using
the default key binding scheme, press 'Shift'+'F1' to invoke a browser window and look up the keyword
on the site configured in the Preferences. Press 'Ctrl'+'F1' to perform the lookup using the site configured
in the General Help field on the Language Help page.

Language Configuration

To configure the languages supported by Komodo, select Edit|Preferences|Languages, then select the
desired language.

Configuring Perl

Use this interpreter: Select Find on Path to use the first Perl interpreter that occurs in the
system'sPATH variable. The paths to interpreters found in thePATH variable are available from
the drop−down list; select a specific interpreter as desired. Alternatively, click Browse and
navigate the filesystem to select the desired interpreter.

• 

Background Syntax Checking: Perl syntax checking is configurable; the degree of syntax
checking is determined by switches sent to the interpreter. Specify the desired level of syntax
checking by selecting the corresponding interpreter switch combination from the drop−down list.
If a setting that uses "taint" mode is selected, thePERL5LIB environment variable is ignored;
syntax checking is not performed on modules located in directories specified viaPERL5LIB.

• 

Customizing Komodo 255/437



Debugger Logging: If this option is enabled, the Komodo debugger logs the debugging session
to a file in the directory specified in the Debugger Log Path field (or the directory specified in
the system'sTEMP variable, if no directory is specified). This is primarily for debugging the
debugger, as opposed to gaining additional insight on the debug session itself. The debugger log
file is named perl−dbgp.log. The contents of the log file are overwritten each time the debugger
is invoked.

• 

Additional Perl Import Directories: Directories specified in this field are inserted at the
beginning of Perl's@INC array (in the same manner as Perl's "I" command−line argument).
Modules in the specified directories are used for debugging, syntax checking and during
interactive shell sessions.

• 

Configuring PHP

Click the PHP Debugger Configuration Wizard button to configure the location of the PHP interpreter,
to modify thephp.ini file for Komodo debugging, and to install the required debugging extensions.
To manually configure PHP debugging, refer to Debugging PHP for instructions.

Use this interpreter: Select Find on Path to use the first PHP interpreter that occurs in the
system'sPATH variable. The paths to interpreters found in thePATH variable are available from
the drop−down list; select a specific interpreter as desired. Alternatively, click Browse and
navigate the filesystem to select the desired interpreter.

• 

Path to alternate PHP configuration file: Thephp.ini file must be modified to support
Komodo debugging. To specify an differentphp.ini than the one configured by the PHP
Debugger Configuration Wizard, enter the path in this field, or use the Browse button. See
Debugging PHP for information about manually configuring thephp.ini.

• 

Note: Be sure yourphp.ini configuration file is located in your operating system directory. If you
used the PHP Windows installer, this file should be in the correct location. To verify, on Windows
2000/NT thephp.ini file should be in \winnt; on Windows 98/Me the php.ini file should be in
\windows. On Windows XP, the system directory is either\winnt or \windows, depending on
whether XP was a native installation or was an upgrade from a previous Windows version.

Sharing PHP Preferences and Files

Use Komodo's shared support functionality to share PHP preferences, run commands, code snippets,
templates, .tip files, or other items that have special usefulness within your PHP programming group. See
Configuring Shared Support for more information.

Configuring Python

Use this interpreter: Select Find on Path to use the first Python interpreter that occurs in the
system'sPATH variable. The paths to interpreters found in thePATH variable are available from

• 

Customizing Komodo 256/437



the drop−down list; select a specific interpreter as desired. Alternatively, click Browse and
navigate the filesystem to select the desired interpreter.
Additional Python Import Directories: Directories specified in this field are inserted at the
beginning of Python'sPYTHONPATH environment variable. Modules in the specified directories
are used for debugging, syntax checking and during interactive shell sessions.

• 

Configuring Tcl

Komodo provides the ability to interact with both the standard Tcl interpreter ("Tclsh") and the Tcl
interpreter that supports the Tk widget library ("Wish"). Komodo's Tcl integration also supports logging
and syntax checking. Extended Tcl editing support and the Tcl debugging libraries are included with a
subscription to ASPN Tcl.

Use this Wish interpreter: Select Find on Path to use the first Wish interpreter that occurs in the
system'sPATH variable. The paths to interpreters found in thePATH variable are available from
the drop−down list; select a specific interpreter as desired. Alternatively, click Browse and
navigate the filesystem to select the desired interpreter.

• 

Use this Tclsh Interpreter: As described above, specify the desired Tclsh interpreter.• 
Enable Debugger Log: If this option is enabled, the Komodo debugger logs the debugging
session to a file in the directory specified in the Debugger Log Path field (or the directory
specified in the system'sTEMP variable, if no directory is specified). This is primarily for
debugging the debugger, as opposed to gaining additional insight on the debug session itself. The
debugger log file is named tcl−dbgp.log. The contents of the log file are overwritten each time
the debugger is invoked.

• 

Additional Tcl Include Directories: Directories specified in this field are inserted at the
beginning of Tcl'sTCLLIBPATH environment variable. Modules in the specified directories are
used for debugging, syntax checking and during interactive shell sessions.

• 

Tcl Syntax Checking

To specify Tcl syntax checking:

Warning messages to suppress: The warning messages listed in this dialog box can be disabled.
This prevents Komodo's syntax checking functionality from reporting these warnings.

• 

Error messages to suppress: The error messages listed in this dialog box can be disabled. This
prevents Komodo's syntax checking functionality from reporting these errors.

• 

Additional options: Configure the level of error and warning checking by using the switches
−W1 (display parsing and syntax errors),−W2 (display parsing and syntax errors, and usage
warnings),−W3 (display parsing and syntax errors, portability warnings, upgrade warnings,
performance warnings, and usage warnings), and−Wall (displays all messages and errors (the
default)). Additionally, specific warning and error messages can be suppressed using the
−suppress error switch.

• 

Customizing Komodo 257/437

http://www.ActiveState.com/Products/ASPN_Tcl


Force checking for specific Tcl/Tk Version: To use a version of Tcl other than the default (8.4)
for warning and error checking, select the desired version from the drop−down list.

• 

Sharing Tcl Preferences and Files

Use Komodo's shared support functionality to share Tcl preferences, run commands, code snippets,
templates, .tip files, or other items that have special usefulness within your Tcl programming group. See
Configuring Shared Support for more information.

Configuring HTML

Komodo works in conjunction with HTML Tidy to provide configurable syntax checking for HTML
files. The following options can be configured:

Error Level: Errors Only displays all HTML errors with a red underline; Errors and Warnings
displays both errors and warnings with a red underline.

• 

WAI Accessibility Conformance level: The Web Accessibility Initiative (WAI) provides HTML
developers with guidelines for making web content accessible to those with disabilities. These
guidelines include methods for making content understandable and navigable (for example,
adding "alt" text to an "img" tag for those who cannot view images). WAI accessibility levels
are:

Off: WAI accessibility is off. No WAI−related syntax errors are reported.♦ 
Priority 3: The lowest WAI conformance level. One or more groups will have difficulty
accessing the information in this document.

♦ 

Priority 2: Satisfying this level removes significant barriers to accessing content in this
document.

♦ 

Priority 1: The highest WAI conformance level. A web content developer must satisfy
this level for the greatest content accessibility.

♦ 

• 

Configuration File: Tidy functionality can be customized via a custom configuration file. See
teaching Tidy about new tags on the W3C site for information on building a custom
configuration file. To specify a custom Tidy configuration file, click Browse beside the
Configuration File text box to locate the configuration file on your filesystem.

• 

New Files Preferences

When the New button is used to create a new file, Komodo, by default, opens a text file in the Editor
Pane. To alter the default, select the desired file type from the drop−down list. To specify the
end−of−line marker for new files, select the desired marker from the drop−down list.

The Komodo templates used to create new files (File|New|New File) support the same Interpolation
Shortcut codes as snippets and run commands. Prior to Komodo Version 2.5, only a limited set of
variables could be used (for example, to embed the current date and time in files created from custom

Customizing Komodo 258/437

http://www.w3.org/People/Raggett/tidy/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#themes
http://www.w3.org/People/Raggett/tidy/


templates). The new Interpolation Shortcuts are more powerful but are backward−incompatible.

Select the first check box under Templates in New File Preferences to display a warning prompt
whenever you attempt to create a new file using a template containing the old type of template code.

Enter a number in the Number of recent templates to remember field to specify how many recent
template names appear on the File|New drop−down menu.

The encoding for new files is determined by the configuration of the Internationalization preference.

Printing Preferences

Print Line Numbers: Check this box to print the line numbers.• 
Print in Color: To print in the colors displayed in the Editor Pane, check this box.• 
Wrap long lines at n characters: Set the column at which lines will wrap. Specify "0" characters
for no line wrapping.

• 

Scale font sizes from screen to print by n: Specify the number of times larger or smaller the
printed font size will be in relation to its size on screen. The default is "1.5". Specify "1" to print
the current font size.

• 

Projects and Workspace Preferences

Workspace

Use the When starting Komodo field to specify the display when Komodo is opened.

Ask me whether to restore workspace: Komodo prompts to open recent files and projects.• 
Restore last workspace: Komodo displays the workspace exactly as it was when you last quit
Komodo (including expanded tabs and open files).

• 

Do not restore last workspace: Komodo displays the default workspace (the Start Page and no
expanded tabs).

• 

Opening and Closing Projects

These options specify the relationship between projects and files that are open in the Editor Pane.

When opening a project, set Komodo to:

Ask me what to do: Komodo prompts whether the files that were open when the project was last
closed should be re−opened.

• 

Open recent files: Komodo automatically opens the files that were open when the project was
last closed.

• 

Customizing Komodo 259/437



Open no files: Komodo opens the project without opening any files.• 

When closing a project, set Komodo to:

Ask me what to do: Komodo prompts whether open files associated with the project should be
closed.

• 

Close all open files in project: Komodo automatically closes open files associated with the
project.

• 

Close no files: Komodo closes no files.• 

File Status Updates in Project Manager

The Update file status automatically option enables a periodic check of the read/write status and the
source code control status of components stored in the Project Manager and the Toolbox.

Status refresh can also be performed manually; see Refreshing Project Status for more information.

Importing Files From Disk

Specify the defaults for the Import from File System option, available in the option in the Project
Manager, the Toolbox, and in folders stored in either a project or the Toolbox. These defaults can be
overridden in the Import from File System dialog box.

Filenames to include: Specify the filenames to include. Use wildcards ("*" and "?") to specify
groups of files. Separate multiple file specifications with semicolons. If the field is left blank, all
files in the specified directory are imported.

• 

Filenames to exclude: Specify the file and directory names to exclude. Use wildcards ("*" and
"?") to specify groups of files. Separate multiple file specifications with semicolons. If the field
is left blank, no files in the specified directory are excluded.

• 

Import Subdirectories Recursively: To import subdirectories located beneath the directory
specified for the import, check Import Subdirectories Recursively. Specify how Komodo should
handle subdirectories by selecting one of the following options:

Import directory structure: If the Import Subdirectories Recursively box is checked and
this option is selected, Komodo creates folders within the project that represent imported
directories. Thus, the directory structure is preserved within the project.

♦ 

Make a folder per language: If this option is selected, imported files are organized into
folders according to the language indicated by file pattern in the filename. File
associations are configured in the Komodo Preferences. Each folder is named after the
associated language, for example, "Perl files", "XML files", etc. Files that don't
correspond to a known file pattern are stored in a folder called "Other files".

♦ 

Make one flat list: If this option is selected, all the imported files are placed directly
under the project or folder from which the Import from File System command was
invoked.

♦ 

• 

Triggering Macros

Customizing Komodo 260/437



Macros can be configured to execute when specific Komodo events occur (such as before a file is saved
or after a file is closed). To disable this feature, uncheck Enable triggering of macros on Komodo
events.

Configuring Proxies

By default, Komodo's language−specific Help accesses content from the Internet. If your system is
behind a proxy, you must configure the proxy's IP address and port number to access this content. If your
system is not behind a proxy, select Direct connection to the Internet (the default). Otherwise, select
Manual proxy configuration and configure the following options:

HTTP Proxy: Enter the IP address of your network's proxy server.• 
Port: Enter the port number on the proxy server that is configured to access the Internet.• 
No Proxy for: To exclude specific domains from being routed through the proxy, enter the
desired domain names in this field. If there are multiple domains to exclude, separate the domain
names with a comma.

• 

Servers Preferences

Use the Servers page to configure FTP servers and accounts for remote file access. To access the Servers
page, select Edit|Preferences|Servers. Note that you can also manually connect to a server when opening
or saving remote files.

See Opening Remote Files for information about working with remote files.

If no servers have been previously configured, enter access information as described below and click the
Add button. If there are prior server configurations, click the New Server button to clear the fields. To
alter an existing configuration, select the configuration from the drop−down list, make the desired
changes, then click the Update button. To delete a configuration, select the desired configuration and
click the Delete button.

Remote Accounts: Previous server configurations can be accessed via this field.• 
Server Type: The server type is "FTP".• 
Name: Enter a name for the account. The value in this field is displayed in the "Remote
Accounts" drop−down list box, and is used as the Server name in the Remote File dialog box.

• 

Hostname: Enter the name of the FTP server. The name may be in the format "ftp.server.com",
or may be the name of a machine within a local domain.

• 

Port: By default, FTP uses port 21.• 
User Name: If you require an account to use the FTP server, enter the user name in this field. If
access to the FTP server is anonymous, enter "anonymous".

• 

Password: If you require an account to use the FTP server, enter the account password in this
field. If access to the FTP server is anonymous, the password is usually an email address (such as

• 

Customizing Komodo 261/437



"user@host.com").
Default Path: To specify the directory that displays when you connect to the server, enter the
path in this field.

• 

Anonymous Login: If the server allows anonymous login, check this box.• 

Shared Support Preferences

Komodo's shared support functionality is used to configure components on one machine and distribute
them for use on other machines. Shared support is implemented via a "Common Data Directory", which
stores the shared components. The following components can be shared:

templates• 
Shared Toolbox• 
Tcl .tip files (syntax definition files)• 
.pcx files (checker extension files that define exact syntax information)• 
.pdx files (debugger extension files)• 
preferences• 

To configure shared support, select Edit|Preferences|Shared Support.

To access shared components, Komodo users must have "read" access rights to shared files in both the
Common Data Directory and the Shared Toolbox (if the directory is not the same as the Common Data
Directory). To alter shared components, users must also have "write" rights.

To Configure the Common Data Directory:

The Common Data Directory default locations:

Windows:C:\Documents and Settings\All Users\Application
Data\ActiveState\Komodo\3.0

• 

Unix: /etc/komodo/3.0• 

To specify a custom location for the Common Data Directory:

On the Edit menu, select Preferences|Shared Support.1. 
Click Use custom Common Data Directory location.2. 
Click Choose to select a new location.3. 
Click OK.4. 

Customizing Komodo 262/437



Sharing .tip, .pcx and .pdx Files

Through Shared Support, .tip files (which provide syntax checking for PHP and Tcl) can be made
available site−wide. All .tip files should be stored along with the default .tip information in the tcl
subdirectory of the Common Data Directory.

The other file types that can be shared are .pcx files, which can be used to extend the command
information supported by the TDK Checker and Komodo Tcl linter, and .pdx files, which are debugger
extension files that define debugging functions, such as spawnpoints. Like .tip files, .pcx and .pdx files
are stored in the tcl subdirectory of the Common Data Directory.

Sharing Preferences

Shared preferences are used to set a default preference configuration that is shared between multiple
Komodo users. An organization or user group can specify defaults like the language type for new files,
default tab widths, and other Komodo settings.

There are three levels of preference recognition in Komodo:

user preferences1. 
shared preferences (common)2. 
default preferences (factory)3. 

In a shared configuration, user preferences always override the shared preferences. Shared preferences
always override the default preferences.

To configure shared preferences, set the desired preferences in one instance of Komodo. (This sets user
preferences for that Komodo installation.) Then, edit the prefs.xml file that stores the preferences (located
by default inC:\Program Files\ActiveState Komodo on Windows, and etc/komodo/ on
Unix). (Make a backup copy of prefs.xml before editing it.) In prefs.xml, make the following changes:

Change the value ofcommonDataDirMethod to custom.• 
Change the value ofcustomCommonDataDir to the path to the Common Data Directory.• 

Copy prefs.xml to the Common Data Directory. When other Komodo sessions (configured to use the
same Common Data Directory) are started, the preferences in the Common Data Directory are used.

Because user preferences override both default and shared preferences, ensure that user preferences are
not configured for items defined in the shared preferences. For example, if the shared preference contains
a tab size definition, and a user's personal preference contains a tab size definition, the user's preference
is used, not the shared preference.

Customizing Komodo 263/437



Source Code Control Preferences

Use Komodo's Source Code Control integration to perform the most common SCC repository tasks from
within Komodo, including checking files out, comparing them to the repository version, and checking
files back in. See Source Code Control for information about using SCC functions within Komodo.

Show SCC Output Tab on Commands: Select the desired action from the drop−down list to
specify whether the SCC tab is displayed when SCC commands produce output.

• 

Method used to display 'diff' output: Specify whether the output from the SCC diff command
should be displayed in a separate window, or within a new tab in the Komodo Editor Pane.

• 

CVS Integration

Configure these options to use CVS source code control integration.

CVS Integration: Check this box if you are using a CVS source code repository.• 
CVS executable used: Choose the path to the desired CVS executable file from the drop−down
list, or click Browse to navigate to the file location.

• 

Check for status changes from outside of Komodo: If this box is checked, Komodo checks to
see if the status of files that are open in the editor has changed from the status they had at the last
check. Specify the interval at which Komodo should check the file status in the field below.

• 

Do recursive status checks: When checking the CVS status of files in a project, check this box to
recurse the directories. If this box is not checked, only the status of files in the current directory
are checked.

• 

Diff options: When you use the option Diff (Compare Files), the comparison is performed
according to the style specified here. Any CVS diff options may be specified. For a complete list
of options, refer to the CVS Manual.

• 

Do not warn about CVS external protocols (CVS_RSH) at startup: If you are using an external
protocol (such as RSH) to connect to the CVS repository, check this box if you do not want a
warning displayed when you start Komodo.

• 

Perforce Integration

Configure these options to use Perforce source code control integration.

Perforce Integration: Check this box if using a Perforce source code repository.• 
Perforce executable used: Use the drop−down list or the Browse button to specify the path to the
Perforce executable file.

• 

Check for status changes from outside of Komodo: If this box is checked, Komodo checks to
see if the status of files that are open in the editor has changed from the status it had at the last
check. Specify the interval at which Komodo should check the file status in the field below.

• 

Customizing Komodo 264/437

http://www.cvshome.org/
http://www.cvshome.org/docs/manual/cvs_16.html#SEC130
http://www.perforce.com/


Do recursive status checks: When checking the status of files in a project, check this box to
recurse the directories. If this box is not checked, only the status of files in the current directory
is checked.

• 

Show diff in Komodo: When you use the option Diff (Compare Files), the comparison is
performed according to the style specified here. Refer to the Perforce Manual for a complete
description of the options. (Alternatively, on the command line, enterp4 help diff.)

• 

Use external diff tool: If you want to use a diff tool other than Perforce, it must be specified in
this field. The location of the diff tool must also be included in your system's PATH environment
variable.

• 

Automatically open files for edit before save: Select an option from the drop−down list to
determine what Komodo does if you attempt to save a file that has not been checked out of
Perforce.

• 

Web and Browser Preferences

Web Browser: Specify the browser that Komodo should launch when a web−based language
query or the web browser preview is invoked. Select the desired browser from the list, or use the
Browse button to navigate to the desired browser. If you do not specify a browser, Komodo uses
the system's default browser.

• 

Preview in Browser: Choose the method Komodo uses to preview code in the selected web
browser:

Preview in Komodo tab, other tab group: This option splits the Editor Pane to display
the browser preview in a separate pane.

♦ 

Preview in Komodo tab, same tab group: This option displays the browser preview in
the Editor Pane.

♦ 

Preview in external browser: This option opens the default browser (specified in the
Web and Browser Preferences drop−down list) in a separate window.

♦ 

• 

Windows Integration Preferences

Windows Integration preferences set system−wide file associations on the Windows platform. By
configuring file associations, Komodo becomes the default editor for specific file types. When one of
these files is invoked (for example, by double−clicking the filename in Windows Explorer), Komodo is
automatically launched (if not already running), and the file is loaded in the Editor Pane.

When a file extension is added to the "Edit with Komodo" association, the context menu displayed when
the filename is right−clicked in Window Explorer contains an "Edit with Komodo" option.

To configure file associations:

Select Edit|Preferences|Windows Integration.1. 

Customizing Komodo 265/437

http://www.perforce.com/perforce/doc.021/manuals/cmdref/diff.html#1040665


Click Configure common associations. The Setup Common Komodo File Associations dialog
box opens.

2. 

Select the file extensions for which Komodo should be the default editor, and the files extensions
that should have the "Edit with Komodo" context menu option.

3. 

Individual file extensions may be added and deleted via the lists.

If another application overrides the associations configured by Komodo, click Re−apply settings to
system to reset the Komodo associations.

Customizing Komodo 266/437



Feature Showcase
These quick demos highlight a variety of Komodo features that help you write code quickly and
accurately. Take a look at some advanced search functions; explore your code using the code analysis
tools; create custom workspace components for code reuse and project management.

Editing

Preview Cascading Style Sheets• 
Reuse a Code Fragment• 
Create a Prompting Snippet• 
Code Completion Snippet• 

Code Analysis

Code Descriptions in the Code Browser• 
Object Browser• 
View Construct Scope• 

Debugging

Break on a Variable Value• 
Debug an XSLT Program• 

Search

Fast String Finder• 
Incremental Search• 
Open/Find Toolbar• 

Tools

Google Run Command• 
Interactive Shell• 
Build a Perl Executable with PerlApp• 
Test a Regular Expression• 

Project and Workspace

Create a Custom Toolbar• 
Directory Shortcut• 
Export/Import Project Package• 
Filesystem in Project• 

Feature Showcase 267/437



Custom Keybindings• 
Custom Template in a Project• 

Feature Showcase 268/437



Feature Showcase: Fast String Finder

Two keystrokes to find the next occurrence of a string in the current document − two more keystrokes to
find all occurrences of the string in the current file's directory. Use the Open/Find Toolbar for fast
searches.

Before you start: If necessary, display the Open/Find toolbar (View|Toolbars|Open/Find).

'Alt'+'I' positions the cursor in the Find field.

Enter the search string.

'Enter' searches for the string in the current file.

Feature Showcase: Fast String Finder 269/437



'Tab' positions the cursor in the Find In field. Enter a period to search the directory of the current file.

'Enter' displays all matches in the directory of the current file.

Feature Showcase: Fast String Finder 270/437



Feature Showcase: Custom Toolbar

Use custom toolbars and icons to personalize the Komodo workspace. This showcase describes how to
create a custom toolbar with a custom icon.

Select Toolbox|Add|New Custom Toolbar. Name the toolbar.

Drag and drop items onto the toolbar.

Feature Showcase: Custom Toolbar 271/437



Right−click to access an item's Properties. Click Change Icon.

Choose an icon.

Feature Showcase: Custom Toolbar 272/437



Use the new custom toolbar.

Feature Showcase: Custom Toolbar 273/437



Feature Showcase: Incremental Search

Use Incremental Search to quickly find all occurrences of a string in all open files. (The key bindings
mentioned below are part of the default key binding scheme.)

Select the string.

'Ctrl'+'I' invokes incremental search on the selected string.

Press 'Ctrl'+'I' to find the next occurrence of the string. Continue pressing 'Ctrl'+'I' to find all occurrences
in the current file.

Feature Showcase: Incremental Search 274/437



Press 'Ctrl'+'Page Down' to change to the next open file. Press 'Ctrl'+'I' to find the string.

Feature Showcase: Incremental Search 275/437



Feature Showcase: Find and Open Files with the
Open/Find Toolbar

Use the Open/Find Toolbar to open files via fast keystroke−based filesystem navigation.

Before you start: If necessary, display the Open/Find toolbar (View|Toolbars|Open/Find), and open a file
in the Editor Pane.

Click in the Open field to position the cursor. Enter a period to display the files in the directory where the
current file is stored.

Enter a frontslash to display directories.

Feature Showcase: Find and Open Files with the Open/Find Toolbar 276/437



Enter characters to filter the display.

Use the arrow keys to navigate the list.

Enter a frontslash after a directory to display the directory contents.

Feature Showcase: Find and Open Files with the Open/Find Toolbar 277/437



Select the desired file from the list. Press 'Enter' to update the Open field, and 'Enter' to open the file in
the Editor Pane.

Feature Showcase: Find and Open Files with the Open/Find Toolbar 278/437



Feature Showcase: Code Completion Snippet

Create a snippet that contains the structure for a code object. In this example, a common usage of Perl's
if syntax is stored in a Toolbox snippet.

Before you start: If necessary, display the Toolbox tab (View|Tabs|Toolbox).

Click in the Add button to create a new snippet in the Toolbox.

Configure the snippet.

Feature Showcase: Code Completion Snippet 279/437



Double−click the snippet to insert the contents at the cursor position in the Editor Pane.

Feature Showcase: Code Completion Snippet 280/437



Feature Showcase: Preview Cascading Style
Sheets

Use Komodo's browser preview to view the effects of CSS changes as you edit.

Before you start: Open a CSS file.

Set the web and browser preference to Preview in Komodo tab, other tab group.

Click the Web Preview button and specify a file which uses the CSS file.

Feature Showcase: Preview Cascading Style Sheets 281/437



The preview displays the CSS file via the specified HTML file.

Alter the CSS file. When the changes are saved, the preview is automatically updated.

Feature Showcase: Preview Cascading Style Sheets 282/437



Feature Showcase: Snippet that Prompts for
Input

Create a snippet that prompts for input. This showcase uses an interpolation shortcut to prompt for a
string that is interpolated into the snippet.

Before you start: If necessary, display the Toolbox tab (View|Tabs|Toolbox).

Click in the Add button to create a new snippet in the Toolbox.

Feature Showcase: Snippet that Prompts for Input 283/437



Configure the snippet. The%ask segment is an interpolation shortcut that prompts for an entry when the
snippet is used.

Double−click the snippet. A dialog box is displayed prompts for the "Company Name" value.

The value is interpolated into the comment configured in the snippet.

Feature Showcase: Snippet that Prompts for Input 284/437



Feature Showcase: Google Run Command

Create a run command that launches a Google search on the term under the editing cursor. The
"%(browser)" interpolation shortcut loads the browser configured in Komodo's preferences; the "%W"
shortcut interpolates the word under the cursor in the editor pane.

In the Editor Pane, place the cursor within the word you want to search.

Open the Run Command dialog box (Tools|Run Command). Configure as shown.

Feature Showcase: Google Run Command 285/437



When you click Run, the Google search results for the term are displayed in the browser.

The run command is stored in the Toolbox for re−use.

Feature Showcase: Google Run Command 286/437



Feature Showcase: Using the Interactive Shell

Press 'F12' to switch between the Editor Pane and the interactive shell. This showcase uses the sample
programpreprocess.py, described in the Python tutorial, located by default in install dir\Komodo
x.x\samples\python_tutorials.

Before you start: Configure the interactive shell preferences to load the Python shell by default.

The key bindings mentioned below are part of the default key binding scheme.

On line 67 ofpreprocess.py, select contenttype.

Press 'F12' to open the shell. Enterimport and press 'Ctrl'+'V'. Press 'Enter' to load the module.

Feature Showcase: Using the Interactive Shell 287/437



Enterhelp ( and press 'Ctrl'+'V' again to pastecontenttype. Add a period.

Press 'F12' to switch back to the Editor Pane. SelectgetContentType.

Press 'F12' to switch back to the interactive shell. Press 'Ctrl'+'V' to pastegetContentType, then enter
a closing parenthesis and press 'Enter'.

Feature Showcase: Using the Interactive Shell 288/437



Feature Showcase: Store a Filesystem Layout in
a Project

To mirror a filesystem structure within a project (or within a folder in a project or the toolbox), use the
Import from Filesystem function. Folders will be created for each directory, containing the same files as
on the filesystem.

Right−click a folder in a project and select Import from File System.

Select the directory, specify inclusion and exclusion parameters, and select Import directory structure as
the folder structure.

Feature Showcase: Store a Filesystem Layout in a Project 289/437



The imported file system has the same structure as the disk.

Feature Showcase: Store a Filesystem Layout in a Project 290/437



Feature Showcase: Using Conditional
Breakpoints

Conditional breakpoints are used to pause the debugger when specific events occur, such as when a
variable equals a certain value, an exception occurs, or a function completes execution. This showcase
uses a variable in the Perl sample program; on the Start Page, select Open Sample Project, then
double−click perl_sample.pl in the Project Manager.

Invoke the Breakpoint Properties dialog box (Debug|Add\Edit Breakpoint).

Feature Showcase: Using Conditional Breakpoints 291/437



On the Conditional tab, configure a breakpoint as shown. The break will occur on line 50 when the$sum
variable is equal to $11.75.

The breakpoint is displayed on the margin of the program file, and on the Breakpoints tab.

Feature Showcase: Using Conditional Breakpoints 292/437



Run the debugger. Execution pauses on line 50, when the$sum variable is equal to $11.75.

Feature Showcase: Using Conditional Breakpoints 293/437



Feature Showcase: Store a Custom Template in
a Project

Create a custom template for creating new files with custom elements. Store the template in a project for
re−use.

Create a file with the template contents.

Select File|Save as Template. Close the file in the editor.

Feature Showcase: Store a Custom Template in a Project 294/437



Select File|New|New File. Select the template file and check Add to Toolbox.

Drag and drop the template file from the Toolbox to a project.

Feature Showcase: Store a Custom Template in a Project 295/437



Feature Showcase: Build a Perl Executable

Building a stand−alone executable from a Perl script in Komodo requires ActiveState's Perl Dev Kit
(PDK). The PerlApp packaging tool is run from within Komodo using the Build Standalone Application
option in the Tools menu.

Before you start: Open the perl_sample.pl file contained in the sample project.

From the Tools menu, click Build Standalone Application.

Feature Showcase: Build a Perl Executable 296/437

http://www.activestate.com/Products/Perl_Dev_Kit/


In the Build Standalone Perl Application dialog box, accept the defaults and click Build.

Feature Showcase: Build a Perl Executable 297/437



The Output tab displays the results of the build process.

The perl_sample executable created is a console application. Double−clicking the executable opens a
console window, displays the script output, and closes the window immediately upon completion. To
view the script output, run the executable from the command line.

Feature Showcase: Build a Perl Executable 298/437



The build options set in the Build Standalone Perl Application dialog box can be saved as a Run
Command in the Toolbox.

Feature Showcase: Build a Perl Executable 299/437



Feature Showcase: Shortcut to Commonly Used
Directory

Komodo's Open Shortcut is a fast method for locating files in deeply nested directories. Create a shortcut
in the Toolbox or Project Manager that opens the desired directory.

Select Toolbox|Add|New Open...Shortcut.

Feature Showcase: Shortcut to Commonly Used Directory 300/437



Select a directory, and click OK.

Double−click the shortcut in the Toolbox. the Open File dialog box will open to the specified directory.

Feature Showcase: Shortcut to Commonly Used Directory 301/437



Feature Showcase: Reuse Code Fragments

Create snippet from a code fragment. Store it in the Toolbox for reuse.

In the Editor Pane, select the code.

Drag and drop the selected code onto the Toolbox tab.

Feature Showcase: Reuse Code Fragments 302/437



Feature Showcase: View Code Descriptions in
the Code Browser

Use the Code Browser to view the help documentation embedded in source files.

Before you start: Open the preprocess.kpf project, located under
<komodo−installdir>\samples\python_tutorials\

Open thepreprocess.kpf project. View the project in the Projects tab.

Double−click the preprocess.py file. The file opens in the Editor Pane in a preprocess.py tab.

Feature Showcase: View Code Descriptions in the Code Browser 303/437



Click the Code tab.

Click the '+' to expand the preprocess tree hierarchy. The tree contains all code constructs (variables,
methods, imports, etc.) in the preprocess.py program.

Click the Show/Hide Description button.

Feature Showcase: View Code Descriptions in the Code Browser 304/437



View the Code Description pane to read the help documentation embedded in the preprocess.py source
file.

Feature Showcase: View Code Descriptions in the Code Browser 305/437



Feature Showcase: View the Scope of a Code
Construct

Use the Scope Indicator to locate the current scope of a code construct (variable, namespace, method,
etc.) within the Code Browser's tree hierarchy.

Before you start: Open the preprocess.kpf project, located under
<komodo−installdir>\samples\python_tutorials\. Be sure that line numbers are enabled in Komodo
(View|View Line Numbers).

Open thepreprocess.kpf project. View the project in the Projects tab.

Double−click the preprocess.py file. The file opens in the Editor Pane in a preprocess.py tab.

Feature Showcase: View the Scope of a Code Construct 306/437



Click the Code tab.

Click the '+' to expand the preprocess tree hierarchy. The tree contains all code constructs (variables,
methods, imports, etc.) in the preprocess.py program.

Scoll down to line 129 in the Editor Pane.

Use the cursor to highlight thepreprocess variable.

Feature Showcase: View the Scope of a Code Construct 307/437



View the Status Bar. Notice the Scope Indicator displays thepreprocess variable name and type.

Double−click the preprocess variable on the Scope Indicator. The Code Browser displayspreprocess
in the tree hierarchy. The current scope of thepreprocess variable is located.

Feature Showcase: View the Scope of a Code Construct 308/437



Feature Showcase: Find Code Constructs

Use the Object Browser to search for code constructs (variable, namespace, method, etc.), and locate all
instances of that construct in an open project.

Before you start: Open the preprocess.kpf project, located under
<komodo−installdir>\samples\python_tutorials\. Be sure that line numbers are enabled in Komodo
(View|View Line Numbers).

Open thepreprocess.kpf project. View the project in the Projects tab.

From the Tools menu, select Object Browser.

Feature Showcase: Find Code Constructs 309/437



In the Symbol text box, entercontenttype. Select Show imports. Click Go.

Feature Showcase: Find Code Constructs 310/437



The Object Browser searches the Code Intelligence database and finds all symbols (including imports)
matchingcontenttype.

The Matches pane displays a tree of symbol nodes that outline the general program structure of found
search criteria.

In the Matches pane, scroll down to thegetContentType node. Click the getContentType node. The
Preview pane displays the file wheregetContentType is declared.

In the Matches pane, double−click the getContentType node. The file contenttype.py opens in the Editor

Feature Showcase: Find Code Constructs 311/437



Pane at the position (line 85) where getContentType is declared.

Feature Showcase: Find Code Constructs 312/437



Feature Showcase: Test a Regular Expression
with the Rx Toolkit

Use the Rx Toolkit to create, analyse and debug regular expressions in a program.

Before you start: Open the rx_sample.pl file contained in the sample project.

From thewhile (<DATA>) block, select the regular expression between the "/" characters.

In the Toolbar, click the Regular Expression Toolkit button.

Feature Showcase: Test a Regular Expression with the Rx Toolkit 313/437



Clear the previous contents by clicking Help|Load Sample Regex and Search Text. Copy the selected
expression to the Regular Expression field.

In the Regular Expression pane, add an additional ":(.*)" and click Match All.

Feature Showcase: Test a Regular Expression with the Rx Toolkit 314/437



The Match Results pane now displays three groups for each regular expression match.

Feature Showcase: Test a Regular Expression with the Rx Toolkit 315/437



Feature Showcase: Assign a Key Binding to a
Toolbox Item

Assign a key binding to a frequently used component in the toolbox or a project.

In the Toolbox, right−click the item, and select Properties.

Click the Key Binding tab.

Feature Showcase: Assign a Key Binding to a Toolbox Item 316/437



In the New Key Sequence field, press the desired keys (if sequence already in use, it is indicated in the
Key Sequence Currently Used By field). Click Add, and then click OK.

Feature Showcase: Assign a Key Binding to a Toolbox Item 317/437



Feature Showcase: Distributing a Project in a
Package

Komodo projects and the components they contain can be exported to a package file for distribution to
other Komodo users or for the sake of archiving. Exported packages can be imported by instances of
Komodo running on other machines.

On the Projects tab, right−click the project name and select Export Package.

Feature Showcase: Distributing a Project in a Package 318/437



In the Package Export Wizard, click Next.

Enter a Package Name and an Export Location. Click Next. Click Finish.

Feature Showcase: Distributing a Project in a Package 319/437



On the Projects tab, click the "Add Item" button and select New Folder.

Name the folder "Imported Projects" and click OK.

Feature Showcase: Distributing a Project in a Package 320/437



On the Projects tab, right−click the Imported Projects folder and select Import Package.

In the Package Import Wizard, enter the package to import, and the location where the files will be
extracted. Click Next. Click Finish.

Feature Showcase: Distributing a Project in a Package 321/437



The files contained in the imported package are copied to the location on disk that you specified in the
Package Import Wizard.

Feature Showcase: Distributing a Project in a Package 322/437



Feature Showcase: Debug an XSLT Program

When debugging XSLT programs in Komodo, view the execution location of the XSLT file and the XML
input file at the same time.

Before you start: Open the xslt_sample.xsl file contained in the sample project.

On the Debug menu, click Step In.

In the Debugging Options dialog box, enter birds.xml (also in the Komodo Sample Project) as the input
file. Click OK.

Feature Showcase: Debug an XSLT Program 323/437



Komodo displays split editor pane with yellow arrows showing point of execution in both the XML and
XSLT files. Step through the code using the Step In button ('F11'), or set breakpoints and use the
Go/Continue button ('F5').

Feature Showcase: Debug an XSLT Program 324/437



When debugging is complete the results of the transformation appear in the Output tab. Select the HTML
tab to preview the rendered results.

Feature Showcase: Debug an XSLT Program 325/437



Perl Tutorial

Perl Tutorial Overview

Before You Start

This tutorial assumes...

...that ActivePerl build 623 or greater is installed on your system. ActivePerl is a free distribution
of the core Perl language. See Komodo's Installation Guide for configuration instructions.

• 

...that you have a connection to the Internet.• 

...that you are interested in Perl. You don't need to have previous knowledge of Perl; the tutorial
will walk you through a simple program and suggest some resources for further information.

• 

Perl Tutorial Scenario

You have exported a number of email messages to a text file. You want to extract the name of the sender
and the contents of the email, and convert it to XML format. You intend to eventually transform it to
HTML using XSLT. To create an XML file from a text source file, you will use a Perl program that
parses the data and places it within XML tags. In this tutorial you will:

Install a Perl module for parsing text files containing comma−separated values.1. 
Open the Perl Tutorial Project and associated files.2. 
Analyze parse.pl the Perl program included in the Tutorial Project.3. 
Generate output by running the program.4. 
Debug the program using the Komodo debugger.5. 

Installing Perl Modules Using VPM or PPM

One of the great strengths of Perl is the wealth of free modules available for extending the core Perl
distribution. ActivePerl includes the Perl Package Manger (PPM) that makes it easy to browse, download
and update Perl modules from module repositories on the internet. These modules are added to the core
ActivePerl installation.

Komodo Professional Edition includes the Visual Package Manager (VPM), a graphical interface for
PPM.

Perl Tutorial 326/437

http://www.ActiveState.com/Products/ActivePerl


Running the Visual Package Manager (Komodo Pro only)

The Text::CSV_XS Perl module is necessary for this tutorial. To install it using VPM:

Select Tools|Visual Package Manager, or click the VPM button on the Toolbar. The VPM
Install tab opens in a browser.

1. 

In the Search field, enter:
Text::CSV_XS

2. 

Click Search. Modules that match the search criteria are displayed in a list in the lower part of
the screen.

3. 

Select the check box next to Text−CSV_XS and click Install. VPM connects to the default
repository, downloads the necessary files and installs them.

4. 

Running the Perl Package Manager (Komodo Personal)

The Text::CSV_XS Perl module is necessary for this tutorial. To install it using PPM:

Open the Run Command dialog box. Select Tools|Run Command.1. 
In the Run field, enter the command:

ppm install Text::CSV_XS

2. 

Click the Run button to run the command. PPM connects to the default repository, downloads
the necessary files and installs them.

3. 

About PPM and VPM

PPM can be run directly from the command line with theppm command. Enterppm help for
more information on command−line options.

• 

By default, PPM and VPM access the Perl Package repository at http://ppm.activestate.com. The
ActiveState repository contains binary versions of most packages available from CPAN, the
Comprehensive Perl Archive Network.

• 

More information about PPM is available on ASPN. PPM documentation is also included with
your ActivePerl distribution.

• 

On Linux and Solaris systems where ActivePerl has been installed by the super−user (i.e.root),
most users will not have permissions to install packages with VPM or PPM. Runppm as root at
the command line to install packages.

• 

Perl Pointer It is also possible to install Perl modules without VPM or PPM using the CPAN shell. See
the CPAN FAQ for more information.

Perl Tutorial 327/437

http://ppm.activestate.com
http://www.perl.com/CPAN-local/
http://aspn.ActiveState.com/ASPN/Perl/Products/ActivePerl/faq/ActivePerl-faq2.html
http://www.cpan.org/misc/cpan-faq.html#How_install_Perl_modules


Opening Files

Open the Perl Tutorial Project

Select File|Open|Project and chooseperl_tutorial.kpf from the /samples/perl_tutorial
subdirectory of the Komodo installation. The files included in the tutorial project are displayed on the
Projects tab in the Left Pane. No files open automatically in the Editor Pane.

Open the Perl Tutorial Files

On the Projects tab, double−click the filesparse.pl, mailexport.xml and mailexport.txt.
These files will open in the Editor Pane; a tab at the top of the pane displays their names.

Overview of the Tutorial Files

mailexport.txt This file was generated by exporting the contents of an email folder (using the
email program's own Export function) to a comma−separated text file. Notice that the key to the
file contents are listed on the first line. The Perl program will use this line as a reference when
parsing the email messages.

• 

parse.pl This is the Perl program that will parse mailexport.txt and generate mailexport.xml.• 
mailexport.xml This file was generated by parse.pl, using mailexport.txt as input. When you run
parse.pl (in Generating Output), this file will be regenerated.

• 

Analyzing the Program

Introduction

In this step, you will examine the Perl program on a line−by−line basis. Ensure that Line Numbers are
enabled in Komodo (View|View Line Numbers). Ensure that the file "parse.pl" is displayed in the
Komodo Editor Pane.

Setting Up the Program

Line 1 − Shebang Line

begins every Perl program• 
associates the program with a Perl interpreter (in this case, the first one in the system's PATH
variable)

• 

warning messages are enabled with the "−w" switch• 

Komodo Tip notice that syntax elements are displayed in different colors. You can adjust the display
options for language elements in the Preferences dialog box.

Perl Tutorial 328/437



Lines 2 to 4 − External Modules

these lines load external Perl modules used by the program• 
Perl module files have a ".pm" extension; "use strict" uses the "strict.pm" module, part of the
core Perl distribution

• 

"use Text::CSV_XS" refers to the module installed in Step One• 

Writing the Output Header

Lines 6 to 7 − Open Files

input and output files are opened; if the output file does not exist, it is created• 
scalar variables, indicated by the "$" symbol, store the files• 
"strict" mode (enabled by loading "strict.pm" in line 2) requires that variables be declared using
the format "my $variable"

• 

Perl Pointer scalar variables store "single" items; their symbol ("$") is shaped like an "s", for "scalar".
Lines 9 to 13 − Print the Header to the Output File

"<<" is a "here document" indicator that defines the string to be printed• 
the text "EOT" is arbitrary and user−defined, and defines the beginning and end of the
string

♦ 

the second EOT on line 13 indicates the end of output♦ 
lines 10 and 11 are data that will be printed to the output file• 

Setting Up Input Variables

Lines 15 to 16 − Assign Method Call to Scalar Variable

the result of the method call "new" is assigned to the scalar variable $csv• 
the method "new" is contained in the module Text::CSV_XS• 
({binary => 1}) tells the method to treat the data as binary• 

Perl Pointer good Perl code is liberally annotated with comments (indicated by the "#" symbol).
Lines 18 to 19 − Method "getline"

the method "getline" is contained in the module Text::CSV_XS, referenced in the $csv scalar
variable

• 

"getline" reads the first line of mailexport.txt (referenced in the $in variable), parses the line into
fields, and returns a reference to the resulting array to the $fields variable

• 

Starting the Processing Loop

Perl Tutorial 329/437



Line 21 − "while" Loop

the "while" statement is conditional• 
the condition is "1', so the program endlessly repeats the loop because the condition is
always met

♦ 

the logic for breaking out of the loop is on line 25♦ 
the loop is enclosed in braces; the opening brace is on line 21, the closing brace on line
51

♦ 

Komodo Tip Click on the minus symbol to the left of line 21. The entire section of nested code will be
collapsed. This is Code Folding.

Komodo Tip click the mouse pointer on line 21. Notice that the opening brace changes to a bold red
font. The closing brace on line 51 is displayed the same way.
Lines 22 to 25 − Extracting a Line of Input Data

the "getline" function extracts one line of data from the input file and places it in the $record
scalar variable

• 

if "getline" returns an empty array, the input file has been fully processed and the program exits
the loop and proceeds to line 52

• 

Perl Pointer variable arrays store lists of items indexed by number; their symbol ("@") is shaped like an
"a", for "array".

Converting Characters with a Regular Expression

Lines 27 to 31 − "foreach"

"foreach" cycles through the elements stored in the @$record array• 
the regular expressions on lines 29 and 30 find the characters "<" and "&", and replace them with
their character entity values ("<" and "&" are reserved characters in XML)

• 

Komodo Tip Komodo's Rx Toolkit is a powerful tool for creating and debugging regular expressions.
See Regular Expressions Primer for more information.

Combining Field Reference and Field Data

Lines 33 to 35 − hash slice

line 35 combines the @$record array with the field reference generated in line 19• 

Perl Pointer variable hashes are indicated by the symbol "%", and store lists of items indexed by string.

Writing Data to the Output File

Lines 37 to 50 − Writing Data to the Output File

one line at a time, lines from the input file are processed and written to the output file• 

Perl Tutorial 330/437



portions of the data line (stored in the $record scalar variable) are extracted based on the
corresponding text in the field reference (the first line in the input file, stored in the $fields
variable)

• 

Closing the Program

Line 51 − Closing the Processing Loop

at line 51, processing will loop back to the opening brace on line 21• 
the logic to exit the loop is on line 25• 

Lines 52 to 54 − Ending the Program

line 52 prints the closing tag to the XML file• 
lines 53 and 54 close the input and output files• 

Run the Program to Generate Output

To start, you will simply generate the output by running the program through the debugger without
setting any breakpoints.

Clear the contents of mailexport.xml Click on the "mailexport.xml" tab in the Editor Pane.
Delete the contents of the file − you will regenerate it in the next step. Save the file.

1. 

Run the Debugger Click on the "parse.pl" tab in the editor. From the menu, select
Debug|Go/Continue (or 'F5'). In the Debugging Options dialog box,
click OK to accept the defaults.

2. 

View the contents of mailexport.xml Click on the "mailexport.xml" tab in the editor. Komodo
informs you that the file has changed. Click Yes to reload the file.

3. 

Debugging the Program

In this step you'll add breakpoints to the program and "debug" it. Adding breakpoints lets you to run the
program in chunks, making it possible to watch variables and view output as it is generated. Before you
begin, ensure that line numbering is enabled in Komodo (View|View Line Numbers).

Set a breakpoint: On the "parse.pl" tab, click in the grey margin immediately to the left of the
code on line 9 of the program. This will set a breakpoint, indicated by a red circle.

1. 

Run the Debugger: Select Debug|Go/Continue (or 'F5', or use the Debug Toolbar). In the
Debugging Options dialog box, click OK to accept the defaults. The debugger will process the
program until it encounters the first breakpoint.

2. 

Perl Tutorial 331/437



Komodo Tip Debugger commands can be accessed from the Debug menu, by shortcut keys, or from the
Debug Toolbar. For a summary of debugger commands, see Debugger Command List.

Watch the debug process: A yellow arrow on the breakpoint indicates the position at which the
debugger has halted. Click on the "mailexport.xml" tab. Komodo informs you that the file has
changed. Click Yes to reload the file.

3. 

View variables: In the Bottom Pane, see the Debug tab. The variables "$in" and "$out" appear in
the Locals tab.

4. 

Line 9 − Step In: Select Debug|Step In. "Step In" is a debugger command that causes the
debugger to execute the current line and then stop at the next processing line (notice that the lines
between 9 and 16 are raw output indicated by "here" document markers).

5. 

Line 16 − Step In: On line 16, the processing transfers to the module Text::CSV_XS. Komodo
opens the file CSV_XS.pm and stops the debugger at the active line in the module.

6. 

Line 61 − Step Out: Select Debug|Step Out. The Step Out command will make the debugger
execute the function in Text::CSV_XS and pause at the next line of processing, which is back in
parse.pl on line 19.

7. 

Line 19 − Step Over: Select Debug|Step Over. The debugger will process the function in line 19
without opening the module containing the "getline" function.

8. 

Komodo Tip What do the debugger commands do?

Step In executes the current line of code and pauses at the following line.• 
Step Over executes the current line of code. If the line of code calls a function or method, the
function or method is executed in the background and the debugger pauses at the line that
follows the original line.

• 

Step Out when the debugger is within a function or method, Step Out will execute the code
without stepping through the code line by line. The debugger will stop on the line of code
following the function or method call in the calling program.

• 

Line 21 − Set Another Breakpoint: Click in the grey margin immediately to the left of the code
on line 21 to set another breakpoint.

9. 

Line 21 − Step Out: It appears that nothing happened. However, the debugger actually
completed one iteration of the "while loop" (from lines 21 to 51). To see how this works, set
another breakpoint at line 37, and Step Out again. The debugger will stop at line 37. On the
Debug Session tab, look at the data assigned to the $record variable. Then Step Out, and notice
that $record is no longer displayed, and the debugger is back on line 21. Step Out again, and look
at the $record variable − it now contains data from the next record in the input file.

10. 

Line 37 − Stop the Debugger: Select Debug|Stop to stop the Komodo debugger.11. 

Perl Pointer Did you notice that output wasn't written to mailexport.xml after every iteration of the
while loop? This is because Perl maintains an internal buffer for writing to files. You can set the buffer
to "autoflush" using the special Perl variable "$|".

Perl Tutorial 332/437



More Perl Resources

ASPN, the ActiveState Programmer Network

ASPN, the ActiveState Programmer Network, provides extensive resources for Perl programmers:

Free downloads of ActivePerl, ActiveState's Perl distribution• 
Searchable Perl documentation• 
Trial versions of Perl tools, like the Perl Dev Kit and Visual Perl• 
The Rx Cookbook, a collaborative library of regular expressions for Perl• 

Documentation

There is a wealth of documentation available for Perl. The first source for language documentation is the
Perl distribution installed on your system. To access the documentation contained in the Perl distribution,
use the following commands:

Open the Run Command dialog box (Tools|Run Command), and then typeperldoc
perldoc. A description of the "perldoc" command will be displayed on your screen. Perldoc is
used to navigate the documentation contained in your Perl distribution.

• 

Tutorials and Reference Sites

There are many Perl tutorials and beginner Perl sites on the Internet, such as:

Introduction to Perl, a course developed by the University of Missouri• 
learn.perl.org, which provides book reviews, tips, and access to Perl news lists and books• 

Perl Tutorial 333/437

http://aspn.ActiveState.com/ASPN
http://www.cclabs.missouri.edu/things/instruction/perl/perlcourse.html
http://learn.perl.org/


PHP Tutorial

Overview

Before You Start

This tutorial assumes:

PHP 4.3.1 or greater is installed on your system. See Komodo's Installation Guide for
configuration instructions.

• 

You are interested in PHP. You don't need previous knowledge of PHP; the tutorial will walk
you through a simple program and suggest some resources for further information.

• 

PHP Tutorial Scenario

This tutorial examines a PHP program that implements a form on a website − in this case, a guest book
where site visitors can log comments. In addition to providing an overview and working example of
PHP, the tutorial introduces Komodo's CGI Debugging functionality. In this tutorial you will:

Open the PHP Tutorial Project and associated files.1. 
Analyze guestbook.php, the PHP program included in the PHP Tutorial Project.2. 
Run the program and generate HTML output by running the program.3. 
Debug the program using the Komodo debugger.4. 

See Debugging Programs for more information on this Komodo functionality.

Opening the Tutorial Project

On the File menu, click Open|Project and navigate to the php_tutorial.kpf project file on your filesystem
(install dir\Komodox.x\samples\php_tutorials in Windows and install dir/Komodo
x.x/samples/php_tutorials in Unix. All files included in the tutorial project are displayed on the Projects
tab in the Left Pane.

Overview of the Tutorial Files

The following components are included in the php_tutorial.kpf project file:

guestbook.php: This PHP program writes data from an HTML form to a data file, then extracts
the contents of the data file and formats it as HTML.

• 

PHP Tutorial 334/437

http://www.php.net/downloads.php


Open the PHP Tutorial File

On the Projects tab, double−click the file guestbook.php. The file opens in the Editor Pane; a tab at the
top of the pane displays the filename.

Analyzing the PHP Tutorial File

This section reviews the code in guestbook.php.

Analyzing guestbook.php

Introduction

In this step, you will analyze the PHP program on a line−by−line basis. Ensure that line numbers are
enabled in Komodo (View|View Line Numbers) and that the file guestbook.php is displayed in the
Komodo editor.

HTML Header

Lines 1 to 8 − HTML Header

a standard HTML header is written to the program output• 

Komodo Tip: Notice that syntax elements are displayed in different colors. Adjust the display options
for language elements in the Preferences
dialog box.

PHP Declaration and Datafile

Line 9 − PHP Declaration

PHP programs are embedded in HTML• 
the characters<?php indicate the start of the PHP program• 

Lines 10 to 18 − Comments

the// characters indicate a single−line comment in PHP programs; the# symbol can also be
used. Multi−line comments are nested in/* and */ characters, as shown on lines 27 to 30

• 

Line 22 − Datafile

the file guestbook.dat is created if it does not exist• 
thetmp directory must exist beneath the root of the drive where the program resides (unless a
different location is specified in the Debugging Options).

• 

PHP statements are terminated with semicolons• 

PHP Tutorial 335/437



Komodo Tip: On line 23, type$da. Komodo displays a list of the variables declared above the cursor
position that begin with the lettersda. This is AutoComplete.

GuestBook Class

Lines 25 to 28 − Class Declaration

aclass is a collection of variables and functions• 
class GuestBook contains the functions GuestBook, _getData", outputData, etc• 
thevar statement declares variables as class members, thus making them portable across
functions contained in the class

• 

Komodo Tip: Click the mouse pointer at the end of line 25. Notice that the brace changes to a bold red
font. The closing brace on line 144 is displayed the same way. In this case, the braces mark the
beginning and end of a class. See Editing Files in the Komodo User Guide for more about matching
braces.

GuestBook Function

Lines 34 to 37 − GuestBook Function

a function is a discrete block of code• 
the$datafile argument is passed to the function GuestBook; multiple arguments are
separated by commas

• 

the contents of a function are enclosed in braces• 
$_SERVER is a pre−defined PHP variable; it is passed to the script from the web server• 

in PHP, global variables must be declared to be global inside a function if they are going
to be used in that function

♦ 

a local variable is defined for the current function by use of the term$this; notice that the
same syntax is used to call another function

• 

gb_dat variable is declared on line 27♦ 
gb_dat variable is assigned the value of$datafile♦ 
$this−>data variable is cleared of any prior value♦ 
$this−>_getData variable calls the _getData function that begins on line 53;
when the_getData function is complete, processing returns to line 40

♦ 

Komodo Tip: On line 38, typefunction GuestBook(. When you type the left parenthesis,
Komodo displays a pop−up hint that describes parameters for the functionGuestBook. This is a
CallTip.
Lines 40 to 44 − Check for Valid Form Entry

if the REQUEST_METHOD contained in$_SERVER is equal toPOST, processing passes to the
addGuestBookEntry function on line 120

• 

if the REQUEST_METHOD is not equal toPOST, a redirect message is displayed to the user• 
theecho command generates output♦ 
the characters\" are not included inside the double quotation marks that follow, so that
the message can be displayed as output

♦ 

the PHP variablePHP_SELF is the filename of the current script♦ 

PHP Tutorial 336/437



$_SERVER["PHP_SELF"] extracts thePHP_SELF variable from the$_SERVER
variable

♦ 

Lines 45 to 46 − Check for Variable Value

the if ($this−>data) statement tests if the variable $this−>data has a value• 
the program executes theoutputData function and then the outputForm function♦ 

_getData Function

Lines 53 to 58 − _getData Function

the "file" statement parses the contents of the file stored in thegb_dat variable into the
$lines array

• 

the@ symbol suppresses warnings; in this case, if the data file is empty, the program
generates a non−fatal error

♦ 

the if ($lines) statement checks to see if the $lines variable has data• 
the "join" statement converts the$lines array to a string and places it in the variable
$this−>data

• 

PHP Pointer: Use the "@" operator with care; you could disable error messages for critical errors that
terminate the execution of the script.

outputData Function

Lines 64 to 66 − outputData Function

the contents of the$this−>data variable are written to the standard output using theecho
statement

• 

_createEntryHTML Function

Lines 72 to 77 − Retrieve Form Data

the PHP variable$_POST is used to provide data to the script via HTTP POST• 
lines 74 to 77 extract the form data and place the items in variables• 

Lines 80 to 83 − Validate Form Data

On line 80, the validity of the name and message variables is tested:• 
in !$name and !$message, "!" is a "not" operator; it is true if either variable is not
true

♦ 

The || symbol is an "or" operator♦ 

PHP Pointer: PHP has two "or" operators: the word "or", and the symbol||. The || operator has
precedence over the word "or", providing flexibility in logic tests.

PHP Tutorial 337/437



Line 86 − Current Date and Time

the variable$today contains the result of the PHP functiondate:• 
thedate function returns a string♦ 
the "switches" are interpreted as follows:♦ 

F: text month◊ 
j: numeric day within month◊ 
y: four digit year◊ 
g: hour (12 hour format)◊ 
a: AM / PM◊ 

Lines 89 to 94 − Interpolate Form Data with HTML

text and HTML tags are parsed with the$today variable and the form data• 
thereturn statement supplies the result (true or false) of a function or the value of a variable to
the routine from which it was called

• 

_writeDataFile Function

Lines 100 to 106 − Open the Data File

thefopen function opens the file stored in the$this−>gb_dat variable• 
thew switch opens the file if it exists♦ 
If the file does not exist,fopen will attempt to create it♦ 
the file is opened for writing only, and the file pointer is positioned at the top of the file♦ 

the if !$f statement checks to see if the $f variable contains a value• 

Lines 108 to 110 − Write to the Data Files

thefwrite function writes the contents of $this−>data to the file contained in the$f variable• 

Lines 111 to 113 − Close the Data File

thefclose function closes the file stored in the$f variable• 
the value of thereturn statement is tested on line 112• 

Komodo Tip: Click on the minus symbol to the left of line 100. The entire_writeDataFile function
collapses. This is Code Folding.

addGuestBookEntry Function

Lines 120 to 125 − Call Functions for Writing Data

the$entry variable is local to the addGuestBookEntry function• 
the$entry contains the contents of the$data variable, returned in the
_createEntryHTML function

• 

PHP Tutorial 338/437



on line 123, the contents of$entry are concatenated with the contents of$this−>data, and
stored in$this−>data

• 

outputForm Function

Lines 127 to 142 − The Function for HTML Form

these lines generate a standard HTML form• 
notice the PHP snippet on line 133 that provides the program name to the HTML output• 

Closing Tags

Lines 148 to 151 − Closing Tags

the$gb variable creates a new instance of theGuestBook class using the file specified in the
$datafile variable

• 

when the functions in theGuestBook class are complete, the PHP program is closed using the
syntax?>

• 

closing HTML tags are written as output• 

Running the Program

This section reviews how to run the guestbook.php program using the Komodo debugger.

Run the debugger: Select Debug|Start (or 'F5').1. 
Configure debugging options: In the Debugging Options dialog box, configure the following
options:

2. 

General tab: Select the Simulate CGI Environment check box.♦ 
CGI Input tab:

Set the Request Method option button to Post.◊ 
On the Post Type drop−down list, select URL encoded.◊ 
On the Type drop−down list, select the variable type Post.◊ 
Enter the following names in the Name text box, adding a meaningful value for
each in the Value text box. For example, the value for "name" could be your
own name. Click the Add button after each entry to add it to the Browser
Arguments.

◊ 

"name"⋅ 
"email"⋅ 
"company"⋅ 
"message"⋅ 

♦ 

Run the debugger: Click OK to run the debugger with the selected options.3. 
View the Command Output tab: Notice the messages in the bottom left corner of the Komodo
screen; these inform you of the status of the debugger.

4. 

PHP Tutorial 339/437



View the rendered HTML: Click the HTML tab on the right side of the Debug tab. The HTML
is displayed in the Bottom Pane; previous guestbook entries are displayed at the top of the
output, and the HTML form is displayed at the bottom. Click the Output tab to return to the
HTML code.

5. 

Create New File: To create a new HTML file that contains the HTML code on the Output tab,
select File|New|New File. In the New File dialog box, select the Common Category, and the
HTML template. Click Open.

6. 

Save the Output: Delete the contents of the new HTML file tab in the Editor Pane, then select
the HTML code on the Output tab. Copy the contents to the new HTML file tab in the Editor
Pane ('Ctrl'+'C', 'Ctrl'+'V' if the default key binding scheme is in effect). Select File|Save As to
save the file with a unique name.

7. 

Debugging the Program

In this step you will add breakpoints to the program and debug it. Adding breakpoints lets you run the
program in chunks, making it possible to watch variables and view output as it is generated. Before
beginning, ensure that line numbering is enabled in Komodo (View|View Line Numbers).

Set breakpoints: On the guestbook.php tab in the editor, click on the gray margin immediately to
the left of the code in line 9 of the program. This sets a breakpoint, indicated by a red circle. Set
a second breakpoint on line 148.

1. 

Run the debugger: Select Go|Continue (or 'F5', or use the Debug Toolbar). In the Debugging
Options dialog box, click OK to accept the defaults (assuming that you created the CGI variables
in the previous step, Running the Program).

2. 

Komodo Tip: Notice that the Debugger Options have been saved from the last time a PHP program was
run or debugged.

Komodo Tip: Debugger commands can be accessed from the Debug menu, by shortcut keys, or from the
Debug Toolbar. For a summary of debugger commands, see Debugger Command List.

Watch the debug process: A yellow arrow on the breakpoint indicates the position at which the
debugger has halted.

3. 

Line 9: Step In: Select Debug|Step In. "Step In" is a debugger command that causes the
debugger to execute the current line and then stop at the next processing line (line 19). The lines
between line 9 and line 19 are comments, not processing statements, and are therefore ignored by
the debugger.

4. 

View Variables: Expand the Bottom Pane (if necessary) by clicking and dragging the bottom
margin of the Komodo workspace. Variables defined in the program are displayed on the Locals
tab.

5. 

Line 19: Select Go|Continue (or 'F5', or use the Debug Toolbar). The debugger moves to line
148. TheGuestBook class is called from line 148.

6. 

Line 148: Step In: The debugger is now processing theGuestBook function.7. 

PHP Tutorial 340/437



View Variables: The Locals tab displays all variables.8. 

Line 35: Step In: Expand the$this variable on the Locals tab in the Bottom Pane. Notice that
it now has a sub−variablegb_dat, which stores the value of the data file.

9. 

Line 36: Step In: Continue to step in until the debugger stops at the_getData function.
Continue to select Step In to process each statement in the function. After line 57 has been
processed and the debugger is stopped at line 58, the$lines variable can be expanded on the
Locals tab.

10. 

Line 58: Step Out: On line 58, select Step Out to process the rest of the_getData function.
The debugger will proceed to line 40, which follows the line where_getData was called.

11. 

Komodo Tip: What do the debugger commands do?

Step In: Executes the current line of code and pauses at the following line.• 
Step Over: Executes the current line of code. If the line of code calls a function or method, the
function or method is executed in the background and the debugger pauses at the line that
follows the original line.

• 

Step Out: Executes the code without stepping through the code line by line (when the debugger
is within a function or method). The debugger stops on the line of code following the function or
method call in the calling program.

• 

Line 40: Step In: Continue to select Step In until the debugger is on line 121, in the
addGuestBookEntry function. On line 121, the addGuestBookEntry function calls the
_createEntryHTML function.

14. 

Line 121: Step In: In the_createEntryHTML function, the program assigns variables to the
CGI input data configured in the Debugging Options.

15. 

Line 74: Step Out: The_createEntryHTML function completes, and processing returns to
line 122.

16. 

Line 122: Step In: Use Step In to process each line of theaddGuestBookEntry function,
until processing moves to the_writeDataFile function on line 102.

17. 

Line 102: Step In: Process line 102.18. 
Open Watch Window: On line 102, the program opened the datafile (by default,
\tmp\guestbook.dat). To watch the activity in the datafile, select Tools|Watch File, then specify
the datafile.

19. 

Line 103: Step In: Continue to select Step In until line 108 has been processed. After line 108 is
processed, the contents of the$this−>data variable are written to the datafile, as displayed in
the Watch tab.

20. 

Line 111: Step In: Step In until processing returns to line 45 of theGuestBook function.21. 
Line 45: Step Over: The Step Over debugger command executes the current line, including any
functions called by the current line. When the debugger returns to line 46, notice that the
contents of the$this−>data variable have been written to the Bottom Pane.

22. 

Line 46: Step Over: The debugger executes theoutputForm function, which writes the HTML
form to the Bottom Pane.

23. 

Continue: Select Debug|Continue to run the debugger to the end of the program.24. 

PHP Tutorial 341/437



More PHP Resources

ASPN, the ActiveState Programmer Network

ASPN, the ActiveState Programmer Network, provides resources for PHP programmers:

Mailing lists with many PHP topics.• 

Tutorials and Reference Sites

There are many PHP tutorials and beginner PHP sites on the Internet, including:

The PHP Resource Index, a collection of resources dealing with PHP.• 
www.PHP.net, the home of all that is PHP−related.• 

PHP Tutorial 342/437

http://aspn.ActiveState.com/ASPN
http://php.resourceindex.com
http://www.php.net


Python Tutorial

Overview

Before You Start

This tutorial assumes:

Python 2.3 or greater is installed on your system. ActivePython is a free distribution of the core
Python language. See the Komodo Installation Guide for configuration instructions.

• 

You are interested in learning about Komodo functionality, including the debugger and the
interactive shell.

• 

You are interested in Python and have some programming experience either in Python or another
language.

• 

Python Tutorial Scenario

The Python Tutorial demonstrates how to use the Komodo debugger and interactive shell to explore a
Python program. In particular, this tutorial examines a Python script that preprocesses files (similar to the
C preprocessor). In this tutorial you will:

Open the Python Tutorial Project.1. 
Analyze preprocess.py the Python program included in the Tutorial Project.2. 
Analyze contenttype.py the Python module included in the Tutorial Project.3. 
Run the program and generate program output.4. 
Debug the program using the Komodo debugger.5. 
Explore Python using the Komodo interactive shell.6. 

See Interactive Shell and Debugging Programs for more information on this Komodo functionality.

Opening the Tutorial Project

From the File menu, click Open|Project and navigate to the preprocess.kpf project file on your file
system (install dir\Komodo x.x\samples\python_tutorials in Windows and install dir/Komodo
x.x/samples/python_tutorials in Unix). All files included in the tutorial project are displayed on the
Projects tab in the Left Pane.

Overview of the Tutorial Files

The following components are included in the preprocess.kpf project file:

Python Tutorial 343/437

http://aspn.ActiveState.com/ASPN/Downloads/ActivePython/


preprocess.py: The main program. This Python program parses input source files and produces
output filtered on a set of rules and statements embedded in the original input source.

• 

preprocess current file: A run command for executing preprocess.py on the file currently open
in Komodo.

• 

contenttype.py: A Python module used by the main program (preprocess.py) to identify the
language of a given file.

• 

content.types: A support file used by the Python module contenttype.py.• 
helloworld.html and helloworld.py: Sample files to process using preprocess.py.• 

Open the Python Tutorial File

On the Projects tab, double−click the preprocess.py file. This file opens in the Editor Pane; a tab at the
top of the pane displays the filename.

Analyzing the Python Files

This section reviews the code in preprocess.py and contenttype.py.

Analyzing preprocess.py

In this step, you will analyze the Python program preprocess.py in sections. This program is an advanced
Python script that is best addressed by focusing on certain areas within the code. Be sure that line
numbers are enabled in Komodo (View|View Line Numbers) and that preprocess.py is displayed in the
Komodo Editor.

About Preprocessors: A preprocessor is a program that examines a file for specific statements called
"directive statements". These directive statements are interpreted, and the resulting program output is
conditional based on those statements. In languages like C/C++, preprocessing is a common step applied
to source files before compilation. The Python preprocessor.py program mimics a C/C++ preprocessor
using similar directive statements.

About Directive Statements: Preprocessor directive statements are dependent on the preprocessor
program they are used within. In the preprocessor.py program, a directive is preceded with a pound sign
(#), and is located alone on a line of code. Placing a directive on a unique line ensures the statement is
included in a file without breaking file syntax rules. Valid preprocessor.py directives include:

    #define <var>[=<value>]
    #undef <var>
    #if <expr>
    #elif <expr>
    #else
    #endif
    #error <error string>

Python Tutorial 344/437



Setting Up the preprocess.py Program

Komodo Tip: Notice that syntax elements are displayed in different colors. You can adjust the display
options for language elements in the Preferences dialog box.
Lines 3 to 57 − Defining a Module Docstring

help is defined in a module docstring• 
docstrings are contained in triple−quoted strings (""")• 

Komodo Tip: See Explore Python with the Interactive Shell to examine these docstrings, and other
Python elements, using the Komodo interactive shell.

Komodo Tip: Click on the minus symbol to the left of line 3. The entire section of nested help code is
collapsed. This is called Code Folding.
Lines 59 to 65 − Importing Standard Python Modules

Imports the following six modules:• 
os: operating system dependant helper routines♦ 
sys: functions for interacting with the Python interpreter♦ 
getopt: parses command line options♦ 
types: defines names for all type symbols in the standard Python interpreter♦ 
re: evaluates regular expressions♦ 
pprint: supports pretty−print output♦ 
logging: writes errors to a log file♦ 

Line 67 − Importing the contenttype Module

The customcontenttype module is used by the preprocess.py program and is not included in a
standard Python installation.

loads thecontenttype module and imports the getContentType method• 

Komodo Tip: To interact directly with thecontenttype.py module, see Explore Python with the
Interactive Shell for more information.

Defining an Exception Class

Lines 72 to 88 − Declaring an Exception

PreprocessError class inherits from the Python Exception class• 
an instance of thePreprocessError class is thrown by the preprocess module when an
error occurs

• 

Komodo Tip: Click the mouse pointer on the closing parenthesis ")" on line 72. Notice that its color
changes to a bold red. The opening brace is displayed the same way. This is called "Brace Matching".
Related features in Komodo are Jump to Matching Brace and Select to Matching Brace, available via

Python Tutorial 345/437



the Code menu.

Initializing Global Objects

Line 93 − Initializing log

log is a global object used to log debug messages and error messages• 

Komodo Tip: On line 95, enter:log = logging.
When you type the period, Komodo displays a list of the members in thelog package. This is called
AutoComplete. Pressing 'Ctrl'+'J' (if the default key binding scheme is in effect) also displays the
AutoComplete list. Delete the contents of line 95.
Lines 98 to 111 − Mapping Language Comments

_commentGroups is a mapping of file type (as returned bycontent.types) to opening
and closing comments delimiters

• 

mapping is private to thepreprocess.py module (_commentGroups is prefixed with an
underscore to indicate that it is private to thepreprocess.py module). This is a common
technique used in variable, function, and class naming in Python coding).

• 

Note that preprocessor directives recognized by thepreprocess.py module are hidden in
programming language−specific comments.

Komodo Tip: Use the Code tab, located in the Left Pane, to browse the general program structure of all
currently open files. For each file, the code browser shows a tree of classes, functions, methods and
imported modules. Python instance attributes are also displayed.

Defining a Private Method

Lines 116 to 123 − Expression Evaluation

_evaluate method is private to the preprocess module• 
evaluates the given expression string with the given context• 

Preprocessing a File

Thepreprocess method examines the directives in the sample source file and outputs the modified
processed text.

Lines 129 to 140 − The preprocess Method Interface

Thepreprocess method takes three parameters as input:

first parameter is the filename,infile• 
second parameter specifies the output file (defaults tostdout); outfile=sys.stdout• 
third parameter is an optional list of definitions for the preprocessor;defines={}• 

Python Tutorial 346/437



Lines 145 to 156 − Identifying the File Type

Examines how programming comments are delimited (started and ended) based on the type of file (for
example, HTML, C++, Python).

getContentType is called (imported earlier from the contenttype.py module) to
determine the language type of the file

• 

file type is used to look up all comment delimiters (opening and closing language comment
characters) in_commentGroups

• 

Lines 159 to 166 − Defining Patterns for Recognized Directives

This section defines advanced regular expressions for finding preprocessor directives in the input file.

Komodo Tip: Use the Komodo Rx Toolkit to build, edit, or test regular expressions. New to regular
expressions? The Regular Expressions Primer is a tutorial for those wanting to learn more about regex
syntax.

Lines 178 to 303 − Scanning the File to Generate Output

This block of code implements a basic state machine. The input file is scanned line by line looking for
preprocessor directives with the patterns defined above (stmtRes). This code determines whether each
line should be skipped or written to the output file.

source file is processed• 
output is generated by a state machine implemented in Python• 

Lines 311 to 349 − Interpreting Command Line Arguments

Themain method takes the text entered at the command line and uses thegetopt module to parse the
data into arguments. These arguments are then passed into the "preprocess" method.

runs when preprocess.py is executed as a program rather than loaded as a module• 
parses the filename and any defines (−D) set as command line arguments• 
passes all data to thepreprocess method• 

Lines 351 to 352 − Running the Main Method

runs themain method when preprocess.py is executed as a program• 

Analyzing contenttype.py

In this step, you will analyze the Python program contenttype.py in sections. This Python script is best
addressed by focusing on certain areas within the code. Be sure that line numbers are enabled in Komodo
(View|View Line Numbers) and that contenttype.py is displayed in the Komodo Editor Pane.

Python Tutorial 347/437



Open contenttype.py

On the Projects tab, double−click the contenttype.py file. This file opens in the Editor Pane; a tab at the
top of the pane displays the filename.

Setting Up the contenttype.py Module

Thecontenttype.py module is used by the main program, preprocess.py, to identify what
programming language a particular file is written in based on the file extension and several other tests.

Lines 16 to 19 − Importing External Modules

imports external modules used in this file (re,os, sys, logging)• 
logging is not a standard module; it is new in Python 2.3• 

Getting Data from content.types

Lines 29 to 31 − Finding the Helper File (content.types)

This section outlines the usage of the private_getContentTypesFile method located in the
contenttype module.

returns the complete path to thecontent.types file• 
assumes the file is in the same directory as contenttype.py• 
_getContentTypesFile is a private method that cannot be accessed from outside of the
contenttype module

• 

Lines 33 to 80 − Loading the Content Types from content.types

This section outlines the usage of the private_getContentTypesRegistry method located in the
contenttype module.

locates thecontent.types file and scans it to calculate three mappings to return, as follows:• 

      file suffix −> content type (i.e. ".cpp", a C++ implementation file)
      regex −> content type (i.e. ".*\.html?", an HTML file)
      filename −> content type (i.e. "Makefile", a Makefile)

_getContentTypesRegistry is a private method that cannot be accessed from outside of
thecontenttype module.

• 

Lines 44 to 45: gets thecontent.types file; if none is specified in the parameter for
the method,_getContentTypesFile is called to find the system default

♦ 

Lines 47 to 49: lists the three mappings to return (empty mappings are created here)♦ 
Lines 51 to 79: opens and processes thecontent.types file on a line−by−line basis♦ 

scanning of the file stops when the last line is found, line 57◊ 
Lines 58 to 78: each line is parsed to determine which of the three⋅ 

Python Tutorial 348/437



mappings it contains
an entry is made in the matching one⋅ 
commented lines (starts with #) are ignored⋅ 

Lines 79 to 80: closes thecontent.types file and returns the mappings♦ 

Lines 85 to 118 − Determining a File's Content Type

This section outlines the usage of the publicgetContentType method located in the contenttype
module.

takes one parameter (the name of the file to determine the content)• 
returns a string specifying the content type (for example,
getContentType("my_web_page.htm") returns "HTML" )

• 

getContentType is the only publicly accessible method in the module• 
Line 92:_getContentTypesRegistry is called to load the content.types file
and to load the mappings

♦ 

Lines 96 to 99:filenameMap is first checked to determine if the whole filename can
be used to find a match

♦ 

Lines 101 to 109: if the filename has a suffix (contains a '.'), the suffix map is then used
to find a match

♦ 

Lines 111 to 117: each regex in the regex map is then used to determine if it matches the
filename

♦ 

Line 118: returns the content type for the file (returns an empty string if no match was
found by the above three mappings)

♦ 

Running the Program

This section reviews how to run the preprocess.py program using both a run command and the Komodo
debugger.

Using a Run Command

To start, generate simple output by running the program with the preprocess current file run command,
included in the preprocess.kpf project.

Open the Source File: On the Projects tab, double−click the helloworld.html file. The file opens
in the Editor Pane.

1. 

Open the Run Command: On the Projects tab, double−click the preprocess current file run
command. A Preprocess Current File dialog box appears.

2. 

Preprocess Current File: In the Preprocessor Options text area, enter:
−D SAY_BYE
Click OK to run the program.

3. 

View Output: The helloworld.html file output is displayed on the Command Output tab as
follows:

4. 

Python Tutorial 349/437



 ['path_to_file\\python_tutorials\\helloworld.html']
<html>
<head> <title>Hello World</title> </head>
<body>
<p>Hello, World!</p>
</body>
</html>

Python Tutorial Tip: For more information about the−D SAY_BYE command, see Using the
Debugger.

Komodo Tip: For more infomation on using run commands in Komodo, see the Run Command Tutorial.

Using the Debugger

Generate output by running the program through the debugger without setting any breakpoints.

Run the debugger: Select the preprocess.py tab in the editor. From the menu, select
Debug|Go/Continue (or press 'F5'). In the Debugging Options dialog box, click OK to accept the
defaults.

1. 

View the Debug Output Tab: Notice the messages in the bottom left corner of the Komodo
screen; these inform you of the status of the debugger. When the program has finished, program
output is displayed in the Bottom Pane, on the right side. If necessary, click the Debug Output
tab to display it.

2. 

Troubleshooting: "Why is this error message displayed?"

  preprocess: error: incorrect number of arguments:
  argv=['C:\\path_to_tutorial\\preprocess.py']

This error message is the expected output by the preprocess.py program when no source file or
arguments are specified before it is run. The following instructions explain how to specify a file at the
command line.

Specify a File to Process: On the Projects tab in the Left Pane, double−click the file
helloworld.html. Note the preprocessor directives inside the comments (#) in this file. Select the
preprocess.py tab in the editor. From the menu select Debug|Go/Continue (or press 'F5'). In the
Script Arguments text box on the Debugging Options dialog box, enterhelloworld.html.
Click OK.

3. 

Troubleshooting: "Why is this error message displayed?"

  <html>
  <head> <title>Hello World</title> </head>
  <body>
  preprocess: error: helloworld.html:5: #error: "SAY_BYE is not
  defined, use '−D' option"

Python Tutorial 350/437



This error message is the expected output by the preprocess.py program when no command−line
arguments are specified with the source file helloworld.html. The following instructions explain how to
specify a command−line argument with the source file to be processed.

Specify an Argument with the Source File: Select Debug|Go/Continue (or press 'F5'). In the
Script Arguments text box in the Debugging Options dialog box, enter the following source file
and argument:−D SAY_BYE helloworld.html. Click OK.

4. 

Troubleshooting: Specifying−D SAY_BYE helloword.html outputs the following:

  <html>
  <head> <title>Hello World</title> </head>
  <body>
  <p>Hello, World!</p>
  </body>
  </html>

In the helloworld.html file, ifSAY_BYE is not defined, preprocessing generates an error. IfSAY_BYE is
defined, the preprocessor includes the line<p>Hello, World!</p> in the body of the output of the
HTML. This demonstrates how a Python preprocessor can be used to conditionally include blocks of a
source file being processed.

View the Debug Output Tab: Notice the HTML output and compare the result to the actual file
helloworld.html.

5. 

View Rendered HTML: On the right side of the Bottom Pane, click the HTML tab. The rendered
HTML for the helloworld.html file is displayed in the Bottom Pane. Click the Output tab to
return to the HTML code.

6. 

Create New File: To create a new HTML file that will later contain the HTML code in the
Bottom Pane, select File|New|New File. In the New File dialog box, select the HTML Category.
Click Open.

7. 

Save the Output: Delete the contents of the new HTML file tab in the Editor Pane, and then
select the contents of the Output tab on the Bottom Pane. Copy the contents to the new HTML
file tab in the Editor Pane. Select File|Save As to save the file with a unique name.

8. 

Specify Another Source File: Go through steps 3 to 5 using the file helloworld.py in place of
helloworld.html. Notice how the output displayed is now in Python, (for example,print
"Hello, World!"). This demonstrates how the preprocess.py program can be used to
process files written in different language types.

9. 

Debugging the Program

In this step you will add breakpoints to the program and "debug" it. Adding breakpoints lets you run the
program in sections, making it easier to watch variables and view the output as it is generated.

Set a breakpoint: On the preprocessor.py tab, click on the gray margin immediately to the left of
the code on line 347 of the program. This sets a breakpoint, indicated by a red circle.

1. 

Python Tutorial 351/437



Run the debugger: Select Debug|Go/Continue (or enter 'F5', or use the Debug Toolbar). In the
Script Arguments text box on the Debugging Options dialog box, enter the following source file
and argument (if not there from a recent run):−D "SAY_BYE" helloworld.html. Click
OK.

2. 

Komodo Tip: Debugger commands can be accessed from the Debug menu, by shortcut keys, or from the
Debug Toolbar. For a summary of debugger commands, see the Debugger Command List.

Watch the debug process: Notice that the line where the breakpoint is set (line 347) turns pink.
Also, a yellow arrow appears on the breakpoint. This arrow indicates the position at which the
debugger has halted.

3. 

View variables: On the Debug tab, click the Locals tab. If necessary, resize the pane by clicking
and dragging the upper margin. On the Locals tab, notice the declared variables are assigned
values. Examine theinfile variable. This variable contains the name of the file specified
above (helloworld.html).

4. 

Komodo Tip: What do the debugger commands do?

Step In: Executes the current line of code and pauses at the following line.• 
Step Over: Executes the current line of code. If the line of code calls a function or method, the
function or method is executed in the background and the debugger pauses at the line that
follows the original line.

• 

Step Out: When the debugger is within a function or method, Step Out executes the code
without stepping through the code line−by−line. The debugger stops on the line of code
following the function or method call in the calling program.

• 

Step In: Select Debug|Step In until the debugger stops at line 129, thepreprocess method.
"Step In" is a debugger command that causes the debugger to enter a function called from the
current line.

5. 

Set another breakpoint: Click on the gray margin immediately to the left of the code in line 145
to set another breakpoint. Line 145 is wheregetContentType is called.

6. 

Run the debugger: Select Debug|Go/Continue (or enter 'F5', or use the Debug Toolbar).7. 
Step Over: When line 145 is processed, the variablecontentType is assigned the source file's
(helloworld.html) type (HTML). "Step Over" is a debugger command that executes the current
line of code. If the line of code calls a function or method, the function or method is executed in
the background and the debugger pauses at the line that follows the original line.

8. 

View variables: On the Debug tab, click the Locals tab. Examine thecontentType variable.
This variable contains the type of the source file; the type is "HTML" for helloworld.html.

9. 

Set another breakpoint: Click on the gray margin immediately to the left of the code in line 197
to set another breakpoint. Line 197 is inside of the loop where the source file helloworld.html is
being processed.

10. 

Run the debugger: Select Debug|Go/Continue (or enter 'F5', or use the Debug Toolbar).11. 
Add Watches for Variables: On the Debug tab, click the Watch tab. Click the New button in the
lower−right corner of the Debug tab. An Add Variable dialog box appears. In the Add Variable
dialog box, enterlineNum in the text box. Click OK. Notice that thelineNum variable and its
value are displayed in the Watch tab. ThelineNum variable is the line number of the line

12. 

Python Tutorial 352/437



currently being processed in the source file helloworld.html. Follow the above steps again to
enter a watch for the variableline. The line variable contains the actual text of the line
currently being processed.
Run the debugger: Select Debug|Go/Continue (or enter 'F5', or use the Debug Toolbar). Notice
how the variables in the Watch tab change every time the debugger stops at the breakpoint set at
line 197. Also, notice the output in the right side of the Debug tab. This output changes as new
lines are displayed.

13. 

Disable and Delete a breakpoint: Click on the red breakpoint at line 197. The red beakpoint is
now white with a red outline. This breakpoint is now disabled. Click on the disabled white
breakpoint. This removes the breakpoint, but does not stop the debugger.

14. 

Stop the Debugger: On the Debug menu, click Stop or 'Shift'+ 'F5' (if the default key binding
scheme is in effect).

15. 

Explore Python with the Interactive Shell

In this step you will use the interactive shell to explore thecontenttype module. The Komodo
interactive shell helps you test, debug, and examine your program. See Interactive Shell for more
information.

If starting this section of the tutorial with currently open Python shells, please follow the steps below to
ensure the Python shell's current directory is the Python Tutorial directory.

Close any Current Python Shells: Click the "X" button, located in the upper−right corner of the
Shell tab, for each open Python shell.

1. 

Make preprocess.kpf the Active Project: On the Project menu, select Make Active
Project|preprocess.

2. 

Start using the interactive shell with the Python Tutorial project files:

Start the Interactive Shell: On the Tools menu, select Interactive Shell|Start New Python Shell.
A Python Shell tab is displayed in the Bottom Pane.

1. 

Import a Module: At the ">>>" Python prompt in the interactive shell, enter:import
contenttype
Notice that another ">>>" Python prompt appears after the import statment. This indicates that
thecontenttype module imported successfully.

2. 

Get Help for a Module: At the prompt, enter:help (contenttype)
The help instructions embedded in the contenttype.py file are printed to the interactive shell
screen. This is useful for easily accessing Python documentation without installing external help
files.

3. 

Get Help for a Method in a Module: At the prompt, press the up arrow to redisplay previously
entered commands. Whenhelp (contenttype) is redisplayed, enter .getContentType
at the end of the command. The entire command is as follows:
help (contenttype.getContentType)
Press Enter. The help instructions for thegetContentType method are printed to the shell

4. 

Python Tutorial 353/437



screen. The ability to instantly access help on specific Python functions is a powerful use for the
interactive shell.
Run a Method: At the prompt, enter:
contenttype.getContentType("helloworld.html")
Notice the output identifies the file type asHTML.

5. 

Run Another Method: At the prompt, enter:
contenttype.getContentType("helloworld.py")
Notice the output identifies the file type asPython.

6. 

Run a Final Method: At the prompt, enter:
contenttype.getContentType("test.txt")
Notice the output identifies the file type asText. The contenttype module uses several tests
to determine the data type used within a file. The test that determined that test.txt is a text file
simply analyzed the file extension.

7. 

More Python Resources

ASPN, the ActiveState Programmer Network

ASPN, the ActiveState Programmer Network, a source of numerous resources for Python programmers,
including:

Free downloads of ActivePython, ActiveState's Python distribution.• 
Searchable Python documentation.• 
The Python Cookbook, a collaborative library of regular expressions for Python.• 

Tutorials and Reference Sites

There are many Python tutorials and beginner Python sites on the Internet, including:

The Python Home Page, the home of all that is Python.• 
Python DevCenter, run by O'Reilly Networks, which provides access to tips, articles and other
Python related items.

• 

Preprocessor Reference

The preprocess.py program in this tutorial is a simplified version of another Python preprocess.py script
available via http://starship.python.net/crew/tmick/#preprocess. The version available on
starship.python.net is an advanced portable multi−language file preprocessor.

Python Tutorial 354/437

http://aspn.ActiveState.com/ASPN
http://www.python.org
http://www.onlamp.com/python/
http://starship.python.net/crew/tmick/#preprocess


Tcl Tutorial

Tcl Tutorial Overview

Before You Start

This tutorial assumes:

ActiveTcl 8.3 or greater is installed on your system. ActiveTcl is a free distribution of the Tcl
language.

• 

You are interested in Tcl. Previous knowledge of Tcl is not required as this tutorial walks you
through a simple program. Further Tcl resources are suggested later.

• 

Komodo Professional is required for the Editing the GUI section of this tutorial. Komodo
Professional includes the GUI Builder component, which is required for editing Tcl GUIs. To
upgrade to Komodo Professional, see ActiveState Komodo for more information.

• 

Tcl Tutorial Scenario

Open the Tcl Tutorial project file1. 
Use Tcl Editing Features2. 

Edit the GUI, by making changes to the dlg_tcl_check.ui file. Komodo Professional is required
for this section of the tutorial.

3. 

Add callback code by running the program.4. 
Debug the program using the Komodo debugger.5. 

Opening the Tcl Tutorial Project

On File menu, click Open|Project and navigate to the tcl_tutorial.kpf project file on your file system
(install dir\Komodo x.x\samples\tcl_tutorials in Windows and install dir/Komodo
x.x/samples/tcl_tutorials in Unix). All files included in the tutorial project are displayed on the Projects
tab in the Left Pane.

Overview of the Tutorial Files

The following components are included in the tcl_tutorial.kpf project file:

dlg_tcl_check.ui: The GUI builder project. GUI builder projects are stored with Komodo project
files (.kpf) and carry a .ui file extension. This project contains two associated files,
dlg_tcl_check.tcl and dlg_tcl_check_ui.tcl.

• 

dlg_tcl_check.tcl: A callback file. Only this file should be edited. Generated
automatically when a new GUI Builder project is created.

♦ 

Tcl Tutorial 355/437

http://www.ActiveState.com/Products/ActiveTcl/Download.html
http://www.activestate.com/Products/Komodo/


dlg_tcl_check_ui.tcl: This file is overwritten each time modifications are made to a GUI
Builder project. For this reason, any changes made to this file could be lost. Generated
automatically when a new GUI Builder project is created.

♦ 

Opening the Tcl Project File

On the Projects tab, click the plus sign next to dlg_tcl_check.ui to display its contents. Double−click the
file dlg_tcl_check.tcl. The dlg_tcl_check.tcl file opens in the Editor Pane; a tab at the top of the pane
displays its name.

Using Tcl Editing Features

All Komodo editing features are available when programming in Tcl. The examples and simple exercises
below provide an introduction to these features.

Syntax Coloring

Komodo detects keywords in a Tcl program and applies coloring that makes it easier to quickly identify
specific elements. For example, in dlg_tcl_check.tcl, on line 36, notice that theset command is a
different color from the stringsnormal and disabled. Use the Fonts and Colors Preferences dialog
box (Edit|Preferences|Fonts and Colors) to specify custom coloring for these and many other Tcl
elements.

AutoComplete and CallTips

Komodo helps to make programming faster by displaying available methods for Tcl commands. Komodo
also displays the list of arguments that can be passed to a called function.

On a blank, uncommented line in the file dlg_tcl_check.tcl, enter the following:

str

After typing the "r", Komodo lists all methods beginning withstr. Use the mouse or the up and
down arrow keys to scroll through this list.

1. 

Continue typing until your entry reads:

string is

Notice that the list reduces to the available methods only. Move through the list using the mouse
or the up and down arrow keys.

2. 

Tcl Tutorial 356/437



From the drop−down list, select string is alnum, and then press the Tab key. Komodo completes
the rest of the method name. This is AutoComplete.

3. 

Type a space afterstring is alnum. Komodo lists the arguments for calling the string. This
is CallTips.

4. 

Background Syntax Checking

Komodo checks for syntax errors while you are programming. Komodo identifies syntax errors by
displaying red and green wavy lines below the code. Syntax errors are underlined with a red wavy line;
syntax warnings are underlined with a green wavy line. Notice the text typed in the previous step,
string is alnum, is underlined with a red wavy line. Position your cursor on the red line to display
a warning message on the status bar. See Background Syntax Checking in the Editor documentation for
more information.

Deletestring is alnum.

Code Folding

Collapse and expand blocks of code to view or analyze code structure.

On line 93, click the "−" sign to the left of the Komodo Editor Pane to collapse this block of
code. Notice that the "−" sign becomes a "+" sign.

1. 

Click the "+" sign. The block of text expands again.2. 

Editing the GUI

Use Komodo GUI Builder features to add or remove widgets, or to modify the properties of existing
widgets. Komodo Professional is required for this section of this tutorial. Komodo Professional includes
the GUI Builder component, which is required for editing Tcl GUIs. To upgrade to Komodo
Professional, see ActiveState Komodo for more information.

Opening a GUI Builder Project

GUI builder projects are stored with Komodo Project files and carry a .ui file extension. The project file
used in this tutorial is dlg_tcl_check.ui. To open the project:

Open the Tcl Tutorial Project, if it is not already open.1. 
On the Projects tab, right−click dlg_tcl_check.ui, and select Edit Dialog. The GUI Builder
application launches, and the dialog box is displayed in the GUI Builder workspace.

2. 

Tcl Tutorial 357/437

http://www.activestate.com/Products/Komodo/


Viewing Project Properties

When creating a new GUI Builder project, you are prompted to specify a target language and version.
Different widgets sets are displayed on the Widget Palette, depending on the language and version
selected. View properties of a project by selecting Project Settings from the GUI Builder's File menu.

Adding Widgets to a Dialog

Widgets are added to a dialog from the Palette tab or the Menu tab. In this step, you will add label
widgets to the GUI.

On the Palette tab, click the label widget.1. 
Click in the cell in the first column of the fifth row. The label widget is added.2. 
On the Palette tab, click the label widget again.3. 
Click in the cell in the third column of the fifth row. Another label widget is added.4. 

Tcl Tutorial 358/437



Resizing Widgets

Resizing widgets can involve spanning multiple columns, rows, or changing column or row width or
height. To resize the label widgets:

Click the label widget in the first column.1. 
Position the mouse pointer at the right of the label such that the pointer changes to an arrow
pointing toward a line, and then drag to the right to expand the label widget across two cells.

2. 

Repeat for the label widget in the third column.3. 

Editing Widget Properties

Widget properties define the display characteristics of individual widgets. Common widget properties are
accessible on the GUI Builder toolbar; the complete set of properties is accessible by double−clicking the
widget.

Click the label widget that spans the first two columns. In the Text field on the toolbar, enter
"Now Playing:", and click the "B" (Bold) button to the right.

1. 

Double−click the label widget that spans the last two columns. Remove the contents of the −text
field. (This is the same as clearing the contents in the Text field on the toolbar.) Notice that the
value of the −text field is, by default, the same as the name of the widget (as shown in the field at
the top of the properties page). The widget name itself is used in the callback code you will add
in the next step.

2. 

Click Apply.3. 
Click OK.4. 

Tcl Tutorial 359/437



Build the GUI

Use the GUI Builder test feature to generate output and preview the user interface.

To build the project:

Select Commands|Start Test, or click the green button on the GUI Builder toolbar.1. 
A dialog box prompts you to save the project. Click Save.2. 
The GUI is generated. Review the results.3. 

Tcl Tutorial 360/437



Adding Callback Code

Callback code assigns programmatic actions to the components configured in the GUI. In this step, you
will add code that displays a different message in the second label depending on which radio button is
selected.

Each dialog project in Komodo contains two files. One file (with a _ui suffix in the file name, in this case
dlg_tcl_check_ui.tcl) is regenerated each time the GUI Builder is run. Therefore, user code should never
be placed in this file. The other file (without the _ui suffix, dlg_tcl_check.tcl) is used to store the user
code, which is preserved regardless of future edits to the dialog.

Open the Program File

In the GUI Builder, select Commands|View Code. The dlg_tcl_check.tcl file opens in the Komodo Editor
Pane.

Adding Code to the Radio Buttons

In this section, you will add code that displays a different message in the label widget depending on radio
button selection.

On line 49, insert a line after the opening brace and enter the following:

    variable BASE
    $BASE._label_2 configure −text "Free Bird"
}

1. 

On line 61, insert a line after the opening brace and enter the following:

    variable BASE
    $BASE._label_2 configure −text "The Liberty Sessions"
}

2. 

On line 73, insert a line after the opening brace and enter the following:

    variable BASE
    $BASE._label_2 configure −text "Radio Killed the Video Star"

3. 

Tcl Tutorial 361/437



}

Note that the text is associated with the widget by specifying the widget name in the
$BASE._label_2 statement, where _label_2 is the name of the widget. To determine the name of
a widget, double−click the widget in the GUI Builder and refer to the field at the top of the properties
page.

Debugging the Program

This section reviews how to add breakpoints to the program and "debug" it. Adding breakpoints lets you
to run the program in parts, making it possible to watch variables and view output as they are generated.
Before you begin, be sure that line numbers are enabled (View|View Line Numbers). Open
dlg_tcl_check.tcl in the Komodo editor (if it is not already open).

Set a breakpoint: Click in the gray margin immediately to the left of the code on line 113 of the
program. This sets a breakpoint, indicated by a red circle.

1. 

Run the debugger: Select Debug|Start (or <F5>, or use the Debug Toolbar). In the Debugging
Options dialog box, click OK to accept the defaults. The debugger processes the program until it
encounters the first breakpoint.

2. 

Komodo Tip: Debugger commands can be accessed from the Debug menu, by shortcut keys, or from the
Debug Toolbar. For a summary of debugger commands, see the Debugger Command List.

Watch the debug process: Notice that a yellow arrow appears on the breakpoint. A yellow arrow
indicates the position at which the debugger has halted.

3. 

Line 113: Step In: Select Debug|Step In. "Step In" is a debugger command that causes the
debugger to execute the current line and then stop at the next processing line. In this case, the
debugger opens the GUI definition file (dlg_tcl_check_ui.tcl). This file initializes the graphical
elements in the applications.

4. 

Line 23: Step Out: Select Debug|Step Out to run the rest of the code in dlg_tcl_check_ui.tcl. The
debugger stops on line 118 in dlg_tcl_check.tcl.

5. 

View variables: In the Bottom Pane, click the Debug tab. On the left side of the Bottom Pane,
click the Global tab. Right−click the$example_radiobutton variable, and then select Add
to Watch.

6. 

View watched variables: On the Watch tab, notice the$example_radiobutton variable is
listed.

7. 

Line 118: Step In: Click the Global tab. Select the$example_radiobutton variable. Select
Step In. Line 118 launches the Tcl application. Note that the debugger appears to be inactive (for
example, no yellow arrow indicates the current debugger position). The debugger is waiting for
action from the application.

8. 

Click "Check it out": Click the "Check it out" check box in the application. The debugger
moves to line 35.

9. 

Set a breakpoint: Click the gray margin on line 39 to set a breakpoint.10. 
Line 35: Run Select Debug|Go/Continue. The debugger stops on line 39.11. 

Tcl Tutorial 362/437



Line 39: Step In: Select Debug|Step In. Focus returns to the application. Click the Radio Liberty
radio button. The debugger moves to line 62. Notice that the$example_radiobutton
variable on the Watch tab now has the value "liberty". This association is defined in the
dlg_tcl_check_ui.tcl file.

12. 

Line 62: Step Into: Select Debug|Step In until line 63 is executed. This returns focus to the
application, and writes "The Liberty Sessions" text to the label.

13. 

Click OK: On the application, click OK. This stops the debugger.14. 

Komodo Tip: What do the debugger commands do?

Step In: Executes the current line of code and pauses at the following line.• 
Step Over: Executes the current line of code. If the line of code calls a function or method, the
function or method is executed in the background and the debugger pauses at the line that
follows the original line.

• 

Step Out: When the debugger is within a function or method, Step Out executes the code
without stepping through the code line by line. The debugger stops on the line of code following
the function or method call in the calling program.

• 

More Tcl Resources

ASPN, the ActiveState Programmer Network

ASPN, the ActiveState Programmer Network, provides extensive resources for Tcl programmers:

Free downloads of ActiveTcl, ActiveState's Tcl distribution• 
Searchable Tcl documentation• 
Trial versions of the Tcl Dev Kit• 

Documentation

There is a wealth of documentation available for Tcl. The first source for language documentation is the
ActiveTcl distribution installed on your system. The "doc" directory contains the ActiveTcl User Guide
and Documentation Index. To view ActiveTcl documentation:

Locate the ActiveTcl distribution on your system (by default, C:\Tcl\doc on Windows)• 
Double−click to open the file ActiveTclHelp.chm.• 

Tutorials and Reference Sites

There are many Tcl tutorials and beginner Tcl sites on the Internet, for example:

Tcl Developer Xchange• 
The Tcl'ers Wiki• 

Tcl Tutorial 363/437

http://aspn.ActiveState.com/ASPN


Tcl Tutorial 364/437



XSLT Tutorial

XSLT Tutorial Overview

Before You Start

This tutorial assumes:

You are interested in XSLT. Previous knowledge of XSLT is not required for this tutorial. The
XSLT Tutorial walks you through a simple program and later suggests various resources for
further information.

• 

XSLT Tutorial Scenario

In the Perl Tutorial, a Perl program converts a text file containing exported email messages to an XML
file. In this tutorial, XSLT converts the XML file to HTML. Note that you do not need to complete the
Perl Tutorial before doing the XSLT Tutorial. Each tutorial can be completed independently. In this
tutorial you will:

Open the XSLT Tutorial Project and associated files.1. 
Analyze mailexport.xml the XSLT program included in the XSLT Tutorial Project.2. 
Run the Program and generate HTML output through the transformation.3. 
Debug the program using the Komodo debugger.4. 

Opening the Tutorial Project

On File menu, click Open|Project and navigate to the xslt_tutorial.kpf project file on your file system
(install dir\Komodo x.x\samples\xslt_tutorials in Windows and install dir/Komodo
x.x/samples/xslt_tutorials in Unix). All files included in the tutorial project are displayed on the Projects
tab in the Left Pane.

Opening the XSLT Tutorial Files

On the Projects tab, double−click the files mailexport.html, mailexport.xml, and mailexport2html.xsl.
These files open in the Editor Pane; a tab at the top of the pane displays each of their names.

Overview of the Tutorial Files

mailexport.xml: An input file that contains email messages converted to XML format. (See how
this was done in the Perl Tutorial.)

• 

mailexport2html.xsl: An XSLT program that generates an HTML file from the mailexport.xml
input file.

• 

XSLT Tutorial 365/437



mailexport.html: A file that stores the HTML output from the XSLT transformation.• 

Analyzing the Program

In this step, you will analyze the XSLT program on a line−by−line basis. Open the XSLT Tutorial
Project and associated files as described in the previous step. Be sure Line Numbers are enabled in
Komodo (View|View Line Numbers). Be sure the mailexport2html.xsl file is displayed in the Komodo
Editor Pane.

XSLT Header

Lines 1 to 3 − XML and XSLT Declarations

an XSLT program is an XML document − thus, the XML version and character set are declared
on the first line

• 

the namespace declaration on the second line tells the "parser" (the XSLT interpreter) that XSLT
elements are prefixed withxsl: to prevent confusion with user−defined element names and
non−XSLT elements

• 

xsl:output controls the appearance of the generated output; for example, the presence of this
line generates aMETA declaration in the head of the HTML output

• 

Komodo Tip: Notice that different types of language elements are displayed in different colors. Adjust
the display options for language elements in the Preferences dialog box.

XSLT Pointer: Processing routines in XSLT programs are enclosed in opening and closing tags similar
to those in XML.

HTML Header

Line 6 − XSLT "template"

template is the main processing element in an XSLT program• 
thematch="/" attribute specifies that the template is selected when the document element is
processed

• 

XSLT Pointer: XSLT commands have (up to) four components: namespace ("xsl"), element
("template"), attribute(s) ("match="), and attribute value(s) ("/").

XSLT Pointer: XSLT uses XPath expressions to select data from XML documents. On line 6,
match="/" selects a "node" in the XML document's hierarchy, rather than a specific item of data.

XSLT Tutorial 366/437



Lines 7 to 11 − HTML Tags

writes standard HTML tags to the output document• 

Line 12 − XSLT apply−templates

processes each node of the XML document (that is, each sub−section contained beneath the
current position in the XML document)

• 

for each node, the XSLT "engine" (the internal processor) checks the XSLT program for a
matching template

• 

the first XML tag with a corresponding template is<EMAIL>• 

Lines 13 to 15 − HTML Tags

after processing all the nodes in the XML document, processing returns to line 13, where the
closing tags for the HTML page are written to the output

• 

line 15 closes the XSLT processing routine, completing the program• 

Format Email Header

Lines 18 to 21 − Select HEADER content

when line 18 is processed, content in<HEADER> tags in the XML document are processed• 
lines 19 and 21 write standard HTML formatting around the content generated in line 20• 
on line 20, thevalue−of statement selects content contained in the<SUBJECT> tag and
writes it to the output document

• 

Komodo Tip: Click the minus symbol to the left of line 19. The entire section of nested code is
collapsed. This is called Code Folding.
Lines 22 to 29 − call−template

after theFrom: text, the call−template routine causes the XSLT program to proceed to the
templateformatEmail on line 51; after completing the formatEmail routine, processing
returns to line 23

• 

with−param indicates that the parameteraddress should be applied to the contents of the
<ORIGADDRESS> XML tag

• 

the same selection and formatting routine is applied to the contents of the<DESTADDRESS>
XML tag on lines 26 to 28

• 

XSLT Pointer: Notice the<BR/> HTML tag on line 25. XML and XSLT treat all tags as container tags
that have both opening and closing elements. However, some HTML tags (like<BR> and<IMG>) stand
alone, and do not require a closing tag. They are represented with a closing slash. XSLT tags also use a
closing slash if they are not a tag pair (as shown on line 23).

XSLT Tutorial 367/437



Process Email

Lines 33 to 34 − Process First Message

when theapply−templates tag in line 12 is encountered, processing jumps to line 33• 
on line 34, theHEADER node is selected and processing jumps to line 18• 

XSLT Pointer: Comments in XSLT programs are enclosed in the tags<!−− and −−>, the same as in
HTML.
Lines 36 to 39 − Process Email Body

after processing the email header, the XSLT program proceeds to line 36• 
the contents of theBODY tag are placed in the HTML tags• 

Komodo Tip: XSLT programs and XML input documents must be "well−formed" in order to perform
transformations. Komodo's Background Syntax Checking makes it easy to identify and fix coding errors.

Format Email Addresses

Lines 45 to 52 − Format Email Addresses

the routine that starts on line 47 is called from lines 22 and 26• 
address parameter contents are determined on lines 23 and 27• 
on line 49, the contents of theaddress parameter are converted to a variable and concatenated
with the text that constitutes a valid email address reference in HTML

• 

Running the Program

To start, generate program output by running the program through the debugger without setting any
breakpoints.

Assign XML input file: On the Debug menu, click Go/Continue (or 'F5'). In the Debugging
Options dialog box, specify mailexport.xml as the XML input file. Use the Browse button to
navigate to the directory containing the XSLT tutorial project files.

1. 

Run the debugger: Click OK to run the debugger.2. 
Stop the debugger: From the Debug menu, select Stop to end the debugging process.3. 
View Debug Output: Notice the messages displayed on the status bar in the bottom left corner of
the screen; these indicate the debugger status. The results of the transformation are displayed on
the Debug tab.

4. 

View the Output as HTML: On the right side of the Bottom Pane, click the HTML tab. The
rendered HTML is displayed in the Bottom Pane. Click the Output tab to return to the HTML
code.

5. 

XSLT Tutorial 368/437



Create New File: To create a new HTML file that will later contain the HTML code in the
Bottom Pane, select File|New|New File. In the New File dialog box, select the HTML Category.
Click Open.

6. 

Save the Output: Delete the contents of the new HTML file tab in the Editor Pane, and then
select the contents of the Output tab on the Bottom Pane. Copy the contents to the new HTML
file tab in the Editor Pane. Select File|Save As to save the file with a unique name.

7. 

Debugging the Program

This section reviews how to add breakpoints to the program and "debug" it. Adding breakpoints lets you
to run the program in parts, making it possible to watch variables and view output as they are generated.
Before beginning, be sure that line numbering is enabled in Komodo (View|View Line Numbers).

Step In/Assign the XML input file: If necessary, click on the mailexport2html.xsl tab in the
editor. From the menu, select Debug|Step In (or <F11>). In the Debugging Options dialog box,
specify mailexport.xml as the XML input file (unless the input file was assigned in the previous
step). Assigning the XML input file to the XSLT program file selects the XML file as the default
input file when running the transformation.

1. 

Start Debugging: In the Debugging Options dialog box, click OK to start debugging.2. 

Komodo Tip: Debugger commands can be accessed from the Debug menu, by shortcut keys, or from the
Debug Toolbar. For a summary of debugger commands, see the Debugger Command List.

Watch the debug process: A yellow arrow on line 6 indicates the position in the XSLT file
where the debugger has halted. Another yellow arrow on line 1 in the XML file indicates the
processing point in the input file.

3. 

View Debug tab: In the Bottom Pane, click the Debug tab. On the right side of the Debug tab,
click the Call Stack tab. On the Call Stack tab, notice that the current call stack is the template in
line 6 of the XSLT program.

4. 

Set a breakpoint: On the mailexport2html.xsl tab in the Editor Pane, click the gray margin
immediately to the left of the code on line 12. This sets a breakpoint, indicated by a red circle.

5. 

Komodo Tip: Breakpoints can be set at any time. An enabled breakpoint is a solid red circle. A disabled
breakpoint is a white circle with a red outline. Click once in the gray margin to enable a breakpoint.
Click an enabled breakpoint once to disable it.

Line 6: Step Out: Select Debug|Step Out. The debugger runs until it encounters the breakpoint
on line 12; if no breakpoint had been set, the debugger runs until the end of the program.

6. 

Line 12: Step In: Click Debug|Step In. Notice the debugger jumps to line 33 of the XSLT
program, and advances the pointer in the XML file to line 4. When the debugger processed line
12 (xsl:apply−templates), it looked for a template that matched the top node in the XML
document (<EMAILCOMMENTS>). When no matching template was found, it proceeded to the
next node in the XML document (<EMAIL>) and found a matching template on line 33.

7. 

XSLT Tutorial 369/437



View the Debug tab: The HTML tags on lines 7 to 11 of the XSLT program are written to the
Bottom Pane.

8. 

View the Debug Variables tab: Notice that the Call Stack tab displays the current template;
previous templates can be selected from the drop−down list.

9. 

Line 33: Step In: Use the Step In command until the current−line pointer in the XSLT file is on
line 20.

10. 

Line 20: Step In: Watch the Bottom Pane as you Step In line 21. Thexsl:value−of
statement selects the contents of the<SUBJECT> field on line 9 of the XML file and places it
within the HTML tags on lines 19 and 21.

11. 

Line 21: Step In: Line 22 calls the templateformatEmail on line 45. Continue to step in until
line 49 is processed. TheformatEmail template is processed with theaddress parameter on
line 46. This routine processes the contents of the<ORIGADDRESS> node in the XML
document. In order to generate the hyperlink in the output HTML document, lines 48 and 49
concatenate the stringmailto: with the contents of the <ORIGADDRESS> node.

12. 

Stop the Debugger: On Debug menu, click Stop to end debugger processing.13. 

More XSLT Resources

ASPN, the ActiveState Programmer Network

ASPN, the ActiveState Programmer Network, hosts the XSLT Cookbook, a collaborative library of
XSLT code.

Documentation

The W3C (World Wide Web Consortium) specifications are available online:

XSLT• 
XPath• 
XML• 

Tutorials and Reference Sites

There are many XSLT tutorials and beginner XSLT sites on the Internet, including:

xml.com's What is XSLT?• 
free tutorials at W3Schools.com• 

XSLT Tutorial 370/437

http://aspn.ActiveState.com/ASPN
http://aspn.ActiveState.com/ASPN/Cookbook/XSLT
http://www.w3c.org/TR/xslt
http://www.w3c.org/TR/xpath
http://www.w3c.org/XML/
http://www.xml.com/pub/a/2000/08/holman/index.html
http://www.w3schools.com/default.asp


Run Command Tutorial

Run Command Tutorial Overview

Before You Start

This tutorial assumes:

You are interested in running external commands from within Komodo.• 
You are not running Windows 98 or ME. Running interactive commands (especially
command.com) on Win98/ME through the Komodo Run Command feature can cause Komodo
to hang. Therefore, the Run Command Tutorial is not supported on Windows 98 or ME.

• 

Run Command Tutorial Scenario

This tutorial introduces you to the Komodo Run Command feature. You will learn how to run simple and
complex custom commands (such asgrep, make, andperl); use these commands to process and
analyze files; save commands to run with a single keystroke; and use commands to make Komodo a
more powerful editor. In this tutorial you will:

Run simple commands using the Komodo Run Command feature.1. 
Use advanced command options to control how and where a command is run.2. 
Save commands in the Toolbox and assign keyboard shortcuts.3. 
Use command shortcuts to customize commands for reuse.4. 
Use command query codes to have your commands prompt you for information before running.5. 
Parse command output into a list of results by specifying a regular expression.6. 

Opening the Tutorial Project

From the File menu, click Open|Project and navigate to the runcmd_tutorial.kpf project file on your file
system (<install dir>\Komodo x.x\samples\runcmd_tutorials in Windows and <install dir>/Komodo
x.x/samples/runcmd_tutorials in Unix). All files included in the tutorial project are displayed on the
Projects tab in the Left Pane.

Running Simple Commands

Hello, World!

The Komodo Run Command feature offers another way to run commands that would otherwise be run on
the system command line. This section starts with a simpleecho command.

Select Tools|Run Command to open the Run Command dialog box.1. 

Run Command Tutorial 371/437



In the Run field, enterecho Hello World.2. 
Click Run. The results are displayed on the Command Output tab.3. 

Command Output Tab

Output from commands is displayed on the Command Output tab.

Use the Command Output tab to interact with commands; if the command accepts input, enter it directly
into the command on the Command Output tab. The Command Output tab has the following features:

Output written tostderr (standard error output) is displayed in red at the top of the Command
Output tab.

• 

To terminate a running command, click the button in the upper right−hand corner of the tab.• 
Many keyboard shortcuts available in the Komodo editor can also be executed on the Command
Output tab. For example, 'Ctrl'+'Shift'+'8' displays white space and 'Ctrl'+'Shift'+'7' displays line
endings (if the default key binding scheme is in effect).

• 

The Toggle Raw/Parsed Output View button is discussed in the Parsing Command Output section of
this tutorial.

Run Command Tutorial 372/437



Inserting Command Output

Insert command output into a document using the Insert output option.

On the Projects tab, double−click the file play.txt. The file opens in the Editor Pane; a tab at the
top of the pane displays its name.

1. 

Select Tools|Run Command.2. 
In the Run field, enter the commanddir (on Windows) or ls −al (on Linux).3. 
Select the Insert output check box, and then click Run. The contents of Komodo's current
directory are inserted into play.txt.

4. 

Filtering Parts of a Document

The Pass selection as input option passes selected text to the specified command. Use this option
together with the Insert output option to filter selected regions of a document.

Open play.txt from the Run Command tutorial project (if it is not already open).1. 
Select all six lines containing the wordfrog.2. 
Select Tools|Run Command.3. 
In the Run field, enter the commandsort (on Windows) or sort −n (on Linux).4. 

Note that the Pass selection as input and Insert output options are selected automatically. If one
or more lines are selected in a document, the Run Command expects to filter the selected lines.

Click Run to sort the list of frogs.5. 

Use thegrep command line utility to filter lines of text. Usegrep to filter out all but the red frogs from
the list.

This tutorial assumes thegrep utility is installed on your system and is in your system's PATH. Grep is
a Linux utility that searches for text and characters in files. Windows operating system users may not
have agrep installation. There are a number of free versions available on the Web. Search using the
keywordsgrep for Windows.

Open play.txt from the Run Command tutorial project (if it is not already open).1. 
Select the "5 red frogs" and "6 green frogs" lines.2. 
Select Tools|Run Command.3. 
In the Run field, enter the commandgrep red.4. 
Click Run to remove all but the red frogs.5. 

Using Advanced Options

Clicking the More button in the Run Command dialog box reveals a number of advanced options.

Run Command Tutorial 373/437



Specifying a Command's Working Directory

To set the current working directory for a command:

Select Tools|Run Command. Click More to display Advanced Options.1. 
In the Run field, enter the command:dir (on Windows), or ls −al (on Linux).2. 
In the Start in field, enter C:\ (on Windows), or /home (on Linux).3. 
Click Run to generate a C:\ directory listing.4. 

Specifying Environment Variables

Specify which environment variables to set for a command. For example, use this feature for setting
PERL5LIB or PYTHONPATH when running Perl or Python scripts.

Select Tools|Run Command.1. 
In the Run field, enter the command:set.2. 
Click New... to add a new environment variable. For the variable name, enter:PERL5LIB3. 
Click Add Path... to choose a value forPERL5LIB (the actual value you choose does not matter
for this example). Click OK.

4. 

Run Command Tutorial 374/437



Click Run to display all environment variables. Scroll through the results on the Command
Output tab until thePERL5LIB setting is located.

5. 

Running GUI Apps or Running Commands in a Console

Run GUI programs outside of the Command Output tab by changing the Run in option to No Console.

Select Tools|Run Command.1. 
In the Run field, enter the command:mozilla
If the Mozilla browser is not installed on your system, choose another GUI application to run.
For example, on Windows, try running either theiexplore or notepad command.

2. 

From the Run in drop−down list, select No Console (GUI Application).3. 
Click Run to open the GUI application rather then the Command Output tab.4. 

To run commands in a new console window:

Select Tools|Run Command.1. 
In the Run field, enter the command:dir2. 
From the Run in drop−down list, select New Console.3. 
Click Run to execute the command and open a new console window.4. 

Saving and Rerunning Commands

Save frequently used commands for quick access and reuse.

Rerunning Recent Commands

Select Tools|Recent Commands to rerun recently run commands.

Saving Commands in the Toolbox

The Run Command dialog box contains an option for saving commands in the Toolbox for reuse. A
command saved in the Toolbox is indicated with the icon.

Run Command Tutorial 375/437



Select Tools|Run Command.1. 
In the Run field, enter the command:echo Hello World2. 
Select the Add to Toolbox check box.3. 
Click Run. Notice that a command namedecho Hello World is added to the Toolbox.4. 
Double−click the  icon next toecho Hello World to rerun the command.5. 

Saving Commands in a Project

Commands can also be stored in a Komodo Project.

For example, the Run Command Tutorial project includes a Command to echo "Hello World".

Consider adding commands to your projects to runmake or other command line tools. There are two
ways to add commands to a project:

Right click on a project and select Add New Command....• 
Drag and drop a command from the Toolbox tab or another open project onto the Projects tab.• 

Editing Saved Command Properties

Edit command properties in the Command Properties dialog box.

Run Command Tutorial 376/437



To open this dialog box, right click on any saved command and select Properties.

Using Command Shortcuts

Run Command shortcuts insert interpolation codes for filenames, directory names, paths and other
arguments into commands as variables. This creates commands that are more generic and useful. Enter
command shortcuts in the Run and Start in fields, or select them from the drop−down lists to the right of
the Run and Start in fields. Windows users should enclose all Komodo shortcuts (with the exception of
%(browser)) in double quotation marks to ensure that spaces in filenames or file paths are interpreted
correctly.

Click the arrow button to the right of the Run field to view a list of Run Command shortcuts.

Run Command Tutorial 377/437



Shortcuts for the Current File

The string%F in a command expands the full path of the current file.

On the Projects tab, double−click the file play.txt. The file opens in the Editor Pane; a tab at the
top of the pane displays its name.

1. 

Select Tools|Run Command.2. 
In the Run field, enter the command:
echo "%F"

3. 

Click Run.4. 

Change the current file status from "writable" to "read−only".

Open play.txt (if it is not already open).1. 
Select Tools|Run Command.2. 
In the Run field, enter the command:
attrib +R "%F"
on Windows, or:
chmod u+w "%F"
on Linux.

3. 

Click Run. The result is displayed at the top of the Command Output tab.4. 

To open a current HTML file in a Web browser, combine %F with the %(browser) shortcut.

On the Projects tab, double−click the file index.html.1. 
Select Tools|Run Command.2. 

Run Command Tutorial 378/437



Click the arrow to the right the Run field to display the shortcuts drop−down list. Select
%browser, press the space bar, and then select %F. Enclose the%F in double quotation marks.

3. 

From the Run in drop−down menu, select No Console (GUI Application).4. 
Click Run.5. 

Shortcuts for the Current Selection

The %s, %S, %w and %W codes insert current selections, or the current word under the cursor, into
commands. This shortcut helps when running utilities likegrep, or for searching the Web.

On the Projects tab, double−click the file index.html.1. 
Position the cursor over the word "PHP" in index.html.2. 
Select Tools|Run Command.3. 
In the Run field, enter the command:
%(browser) http://www.google.com/search?q="%W".

4. 

Select the Add to Toolbox check box to save this command.5. 
Click Run to search for "PHP" with Google.6. 

Now that you have searched for a word or selection in Google, try the following shortcut to search for
PHP methods.

Open index.html.1. 
Select the textmysql_info methods in the file.2. 
Select Tools|Run Command.3. 
In the Run field, enter the command "%(browser)
http://www.php.net/manual−lookup.php?pattern=%S".

4. 

Select the Add to Toolbox check box to save this command.5. 
Click Run to searchmysql_info methods in PHP's online manual.6. 

These two commands are built into Komodo. 'Ctrl'+'F1' (if the default key binding scheme is in effect)
starts a Google search for the current selection. 'Shift'+'F1' in a Perl, Python or PHP file starts a help
search appropriate for that language. Customize searches in the Preferences dialog box
(Edit|Preferences|Language Help).

Using Shortcuts for a Command's Directory

Run commands from the directory where the current file is stored, rather then the current directory. For
example, use the command%(perl) "%F" to run the current file with a configured Perl interpreter.

On the Projects tab, double−click the file hello.pl.1. 
Select Tools|Run Command.2. 
In the Run field, enter the command:
%(perl) "%F"

3. 

In the Start in field, enter:"%D"4. 
Click Run.5. 

Run Command Tutorial 379/437



This example assumes a perl interpreter is configured on your system. If a perl interpreter is not
configured (the required file is perl.exe), an error message displays at the top of the Command Output
tab. Alternatively, run the commanddir (Windows) or ls (Linux) to display a list of files and folders
beneath the current directory.

Using Command Query Shortcuts

Introduction

Run Command query shortcuts prompt for command input data via a dialog box. These queries can be
configured with default values and/or prompt the user if no value could be determined automatically (e.g.
a command to search Google for the current selection that prompts for a search term if nothing is
selected).

The%(ask) shortcut always prompts the user for data. Other shortcuts can use theorask modifier to
prompt the user if no valid value could be determined.

Windows users should enclose all Komodo shortcuts (with the exception of%(browser)) in double
quotation marks. This is necessary to ensure that any spaces in filenames or file paths are interpreted
correctly.

Always Prompting with %(ask)

The full syntax of the%(ask) shortcut is:
"%(ask[:NAME:[DEFAULT]])"
whereNAME is an optional name to use when prompting in the dialog box andDEFAULT is an optional
default value to place in the dialog box.

For example:

Select Tools|Run Command.1. 
In the Run field, enter the command:echo Your favorite number is "%(ask)"2. 
Click the Run button to run the command. The Interpolation Query dialog box is displayed.3. 

Enter your favorite number and click OK to finish running the command.4. 

Refine this shortcut by adding a more meaningful name than "Value 0" and a more appropriate default
value.

Run Command Tutorial 380/437



Select Tools|Run Command.1. 
In the Run field, enter the command:echo Your favorite number is "%(ask:Fav
Number:42)"

2. 

Click the Run button to run the command. The Interpolation Query dialog box will now look
like this:

3. 

If your favorite number does not happen to be 42, enter a different number and click OK to finish
running the command.

4. 

Prompting When Necessary with %(...:orask)

Any Run Command shortcut can be modified to prompt the user for a value if one cannot be determined
automatically. The full syntax of the modified shortcut is:
"%(SHORTCUT:orask[:NAME])"
whereNAME is an optional name to use when prompting in the dialog box.

In the previous step we created a shortcut to search for the selected word on Google with the command:
%(browser) http://www.google.com/search?q="%W"
However, if nothing has been selected and there is no word under the cursor, the command fails. In this
case, it would be better if the command prompted you for a search term.

Be sure your cursor is not positioned over a word.1. 
Select Tools|Run Command.2. 
In the Run field, enter the command:
%(browser) http://www.google.com/search?q="%(W:orask:Search for)"

3. 

Click Run. The Interpolation Query dialog box prompts for a search term.4. 

Parsing Command Output

Introduction

Use Run Commands to specify a regular expression to parse filename and line number information from
lines of output. The parsed results are displayed in a table, to quickly identify the desired file. Explore
this usage by creating a "Find in Files" command later in this section.

Run Command Tutorial 381/437



Parsing with a Regular Expression

To parse command output, specify a regular expression. Each line of output from the command sent to
the Command Output tab is also passed through the regular expression. If the regular expression
matches, an entry is added to the list of parsed results.

Python's regular expression syntax is used to parse command output. Its regular expression syntax is
largely identical to Perl's except for one relevant exception: named groups. Named groups are covered
briefly in this tutorial because they are important for effectively parsing command output. For a more
thorough reference, visit python.org.

Komodo Tip: Use the Komodo Rx Toolkit to build, edit, or test regular expressions. New to regular
expressions? The Regular Expressions Primer is a tutorial for those wanting to learn more about regex
syntax.

To parse the following line of output generated by running grep:
hello.pl:5:print "Hello, frogs!\n";
Output lines are of the form:
<file>:<line>:<content>
An appropriate regular expression to match this line could be:
(.+?):(\d+):(.*)

However, when parsing this line, Komodo requires you specify which group (i.e., which parenthesized
section) is a filename, which is a line number, and which is content. This is where Python's named
groups come in. Using Python's regular expression syntax, for example,(?P<file>.+?) instead of
just (.+?) to assign a name to whatever matches.+?.

When parsing output from the Run Command, Komodo searches for the names file, line, column and
content to determine which part of a matched output line to put into which field in its table of results.
Note that because a column is not included in this particular line of output, Komodo does not assign a
column name.

The regular expression can be extended to:
(?P<file>.+?):(?P<line>\d+):(?P< content>.*)
When parsing the line above, Komodo determines thathello.pl is the file, 5 is the line andprint
"Hello, frogs!\n"; is the content. Click the link below to see the result highlighted in the parsed
output.

Run Command Tutorial 382/437

http://python.org/doc/current/lib/re-syntax.html


Using "Find in Files"

Create a "Find in Files" command using all information presented in this tutorial.

On the Projects tab, double−click the file hello.pl.1. 
Position the cursor over the word frogs.2. 
Select Tools|Run Command.3. 
On Windows, enter the command:
findstr /s /n /c:"%(w:orask:Search Term)" "%(ask:File
Pattern:*.*)"
Or on Linux enter the command:
find . −name "%(ask:File Pattern:*)" | xargs −l grep −nH
"%(w:orask:Search Term)"

Note that findstr is a Windows command line utility that searches for strings in files.

4. 

Select the Add to Toolbox check box to save this command.5. 
In the Start in field, enter:
%(ask:Start Directory:%D)
(When the command is run, Komodo should prompt for the "Start Directory" using the directory
of the current file, or%D as the default value).

6. 

Select the Parse output with check box and enter:
^(?P<file>.+?):(?P<line>\d+):(?P<content>.*)$
as the regular expression with which to parse.

7. 

Select the Show parsed output as a list check box.8. 
Click Run. The Interpolation Query dialog box is displayed.9. 

Click OK to run findstr. A list of all occurrences of "frogs" in the files of the Run Command10. 

Run Command Tutorial 383/437



tutorial project is displayed on the Command Output tab.

Double−click on a parsed result to jump to a specific file and line.11. 
Click the  button to toggle back to the Command Output tab.12. 

Alternatively, double−click on lines in the raw output view to jump to that file and line.

Run Command Tutorial 384/437



Installing Komodo 3.0
Windows

Prerequisites♦ 
Upgrading from a Previous Komodo Version♦ 
Installing Komodo on Windows♦ 
Starting Komodo on Windows♦ 
Uninstalling Komodo on Windows♦ 

• 

Linux
Prerequisites♦ 
Upgrading from a Previous Komodo Version♦ 
Installing Komodo on Linux♦ 
Starting Komodo on Linux♦ 
Uninstalling Komodo on Linux♦ 

• 

Solaris• 
Prerequisites♦ 
Installing Komodo on Solaris♦ 
Starting Komodo on Solaris♦ 
Uninstalling Komodo on Solaris♦ 

Windows

Prerequisites

Hardware Requirements

Intel x86 processor, 200 MHz (or faster) with 128 MB RAM.• 
Up to 230 MB in your TMP directory (as indicated by the value of your 'TMP' environment
variable) during installation, even if you plan to install Komodo to another drive. If you do not
have the required space on this drive, manually set the 'TMP' environment variable to a directory
on a drive with sufficient space.

• 

Operating System Requirements

Supported operating systems:

The following platforms are officially supported. Current Critical Updates, Windows Updates, and
Service Packs must be installed (see http://windowsupdate.microsoft.com).

Windows XP• 
Windows Server 2003• 

Installing Komodo 3.0 385/437

http://windowsupdate.microsoft.com


Windows 2000• 

Other operating systems:

Komodo can also be run on the following platforms. This version of Komodo has not necessarily been
tested on these platforms; platform−specific bugs may or may not be fixed.

Windows NT4 (service pack 5)• 
Windows Me• 
Windows 98 (remote debugging unavailable)• 

Software Prerequisites on Windows

Installation Prerequisites:

Windows 98, Me and NT users: Microsoft Windows Installer (MSI) version 2.0 or greater ( MSI
2.0 for 9x and Me, MSI 2.0 for NT)

• 

Windows 98/NT4 Users: Windows Scripting Host: Microsoft's Windows Scripting Host is
required by the Microsoft Windows Installer. Older versions of Windows did not include the
Windows Scripting Host. To check if your system has the Windows Scripting Host, select Run
from the Windows Start menu, and enterwscript. If the Windows Script Host Setting dialog
appears, WSH is installed on your system. If it doesn't, download the WSH from
http://www.microsoft.com/msdownload/vbscript/scripting51.asp.

• 

Language and Debugging Prerequisites:

Debugging: if firewall software is installed on the system, it must be configured to allow
Komodo to access the network during remote debugging.

• 

Perl: Perl 5.6 or greater is required to debug Perl programs. You can download the latest version
of ActivePerl from the ActiveState website. Ensure that the directory location of the Perl
interpreter (by default,C:\perl) is included in your system's PATH environment variable.
Some advanced features, such as background syntax checking and remote debugging, require
ActivePerl.

• 

Python: Python 1.5.2 or greater is required to debug Python programs. You can download the
latest version of ActivePython from the ActiveState website. Ensure that the directory location of
the Python interpreter (by defaultC:\Pythonxx (where "xx" is the Python version)) is
included in your system'sPATH environment variable. Some advanced features, such as
background syntax checking and remote debugging, require ActivePython. Python 1.5.2 or
greater and a fully configured Tkinter installation are required to create Python dialogs with the
GUI Builder.

• 

PHP: PHP 4.0.5 or greater is required for PHP syntax checking. PHP 4.3.1 or greater is required
to debug PHP programs. Debugging and syntax checking are also available for PHP 5.
Download PHP from http://www.php.net/downloads.php. Ensure that the directory location of
the PHP interpreter (by defaultC:\PHP) is included in your system'sPATH environment
variable. For complete instructions for configuring Komodo and PHP, see Configuring the PHP
Debugger. PHP debugging extensions are available on ASPN, the ActiveState Programmer
Network.

• 

Installing Komodo 3.0 386/437

http://downloads.ActiveState.com/contrib/Microsoft/MSI2.0/9x/instmsi.exe
http://downloads.ActiveState.com/contrib/Microsoft/MSI2.0/9x/instmsi.exe
http://downloads.ActiveState.com/contrib/Microsoft/MSI2.0/NT/InstMsi.exe
http://www.microsoft.com/msdownload/vbscript/scripting.asp
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/
http://www.php.net/downloads.php
http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging


Tcl: Tcl 7.6 or greater is required to debug Tcl programs. You can download the latest version of
ActiveTcl from the ActiveState website.

• 

GUI Builder Prerequisites:

Perl Dialogs created with the GUI Builder: Require the Perl Tk module. This module has been
included with ActivePerl since build 631. If necessary, manually install using the command
"ppm install Tk".

• 

Python Dialogs created with the GUI Builder: Require Python version 1.5.2 or greater.• 
Tcl Dialogs created with the GUI Builder: Require Tcl version 8.3 or greater.• 

Source Code Control Integration Prerequisites:

CVS Source Control Integration: Requires CVS, which is available from
http://www.cvshome.org, or the latest stable version of CVSNT, which is available from
http://www.cvsnt.org/wiki/.

• 

CVS Source Control Integration using Putty: Requires Putty version 0.52 or greater.• 
Perforce Source Control Integration: Requires a connection to a Perforce server with version
99.1 or later.

• 

Miscellaneous Prerequisites:

Komodo Documentation: Komodo's documentation is displayed within the system's default
browser. Supported browsers include Mozilla 1.0 or greater (and all browsers based on Mozilla
1.0 or greater), Opera 6 or greater, Internet Explorer 5 or greater and Konqueror version 3.0.3 or
greater. JavaScript and cookies must be enabled.

• 

The Visual Package Manager: requires ActivePerl Build 633 or later.• 
Web Services: To use Web services in Perl or Python programs, ActivePerl and / or
ActivePython are required.

• 

Perl Dev Kit: In order to build executable programs, ActiveX controls and Windows services in
Perl, you must have ActiveState's Perl Dev Kit version 3.1 or greater installed on your system.

• 

Upgrading from Previous Komodo Versions

To determine your current Komodo version, select Help|About Komodo.

Uninstalling

Unless you are currently using a beta version of Komodo, it is not necessary to uninstall previous
versions before installing Komodo 3.0 as long as the new version is installed in its own new directory.
The Komodo 3.0 installation will import settings from previous Komodo versions.

If you want to replace an existing Komodo installation with the latest version, or if you are currently
using a beta version, uninstall the existing version before installing the new one.

Installing Komodo 3.0 387/437

http://www.ActiveState.com/Products/ActiveTcl
http://www.cvshome.org
http://www.cvsnt.org/wiki/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/
http://www.activestate.com/Products/Perl_Dev_Kit


If you want to run two versions of Komodo, ensure they are installed in separate directories with unique
names.

Remote Debugging

This version of Komodo contains updated remote debugging extensions. Refer to the Remote Debugging
instructions for information about updating the extension.

Debugging Perl Remotely• 
Debugging Python Remotely• 
Configuring the PHP Debugger• 
Using the Tcl Remote Debugger• 

Installing Komodo on Windows

Before you start:

If you intend to run the installation from a shared network drive, your system must have
SYSTEM rights (or greater) to the directory from which the installation is run. Alternatively, run
the installation from a local drive.

• 

To install Komodo on Windows:

Ensure you have the prerequisite hardware and software.1. 
Download the Komodo installer file.2. 
Double−click the installer file and follow the instructions.3. 

When installation is complete, you will see an ActiveState Komodo icon on your desktop.

Starting Komodo on Windows

To start Komodo on Windows, use one of the following methods:

Double−click the desktop icon• 
Select Start|Programs|ActiveState Komodo|Komodo• 
Add the Komodo install directory to yourPATH environment variable, then from the command
line prompt, enterkomodo.

• 

Installing Komodo 3.0 388/437



Uninstalling Komodo on Windows

To uninstall Komodo, select Start|Programs|ActiveState Komodo|Modify, Repair or Uninstall Komodo.

Alternatively, use the Add/Remove Programs menu (accessible from the Windows Control Panel).

Linux

Prerequisites

Hardware Requirements

Intel x86 processor, 233 MHz (or faster) with 128 MB RAM (or greater)• 
100 MB hard disk space• 
up to 200 MB of temporary hard disk space during installation• 

Operating System Requirements

Supported operating systems:

The following platforms are officially supported.

Red Hat 7.3, 8.x and 9.x• 
Red Hat Enterprise Linux 3 (WS, ES and AS)• 
SuSE 9.x• 

Other operating systems:

Komodo can also be run on the following platforms. This version of Komodo has not necessarily been
tested on these platforms; platform−specific bugs may or may not be fixed.

Fedora Core 2• 
SuSE 8.2• 
Debian• 
FreeBSD (with Linux binary compatibility)• 
Gentoo• 

Software Prerequisites on Linux

Installation Prerequisites:

glibc 2.1 (or higher) and libjpeg.so.62 (or higher): These libraries are included in standard
Linux distributions.

• 

Installing Komodo 3.0 389/437

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/linuxemu.html


Two packages, based on different C++ libraries, are available for both Komodo Professional and
Komodo Personal:

The libcpp3 package: built for libstdc++ version 3 (Red Hat 7.x and 8.x)• 
The libcpp5 package: built for libstdc++ version 5 (Red Hat 9.x, Red Hat Enterprise Linux 3,
SuSE 8.x and 9.x, Fedora Core 2)

• 

Choose the distribution that corresponds to your version oflibstdc++. To check which version of
libstdc++ is installed on your machine, run the following command:

        ls /usr/lib/libstdc++*

If libstdc++.so.5 appears in the output, install the libcpp5 version. If not, install the libcpp3
version.

Language and Debugging Prerequisites:

Debugging:
Python, XSLT and PHP require TCP/IP to be installed and properly configured, even if
you are debugging scripts locally.

♦ 

If firewall software is installed on the system, it must be configured to allow Komodo to
access the network during remote debugging.

♦ 

• 

Perl: Perl 5.6 or greater is required to debug Perl programs. You can download the latest version
of ActivePerl from the ActiveState website. Ensure that the directory location of the Perl
interpreter is included in your system'sPATH environment variable. See Adding Perl or Python
to the PATH Environment Variable for instructions. Some advanced editing features, such as
background syntax checking, also require that you have Perl installed.

• 

Python: Python 1.5.2 or greater is required to debug Python programs. You can download the
latest version of ActivePython from the ActiveState website. Ensure that the directory location of
the Python interpreter is included in your system'sPATH environment variable. See Adding Perl
or Python to the PATH Environment Variable for instructions. Some advanced editing features,
such as background syntax checking, also require that you have Python installed. Python 1.5.2 or
greater and a fully configured Tkinter installation are required to create Python dialogs with the
GUI Builder.

• 

PHP: PHP 4.0.5 or greater is required for PHP syntax checking. PHP 4.3.1 or greater is required
to debug PHP programs. Debugging and syntax checking are also available for PHP 5.
Download PHP from http://www.php.net/downloads.php. For complete instructions for
configuring Komodo and PHP, see Configuring the PHP Debugger. PHP debugging extensions
are available on ASPN, the ActiveState Programmer Network. If you intend to debug PHP
applications on a remote Linux Red Hat 9 server, you must install the Red Hat 7.3
backwards−compatibility package. Download the file
compat−libstdc++−7.3−2.96.118.i386.rpm from the Red Hat FTP site
(ftp://rpmfind.net/linux/redhat/9/en/os/i386/RedHat/RPMS).

• 

Tcl: Tcl 7.6 or greater is required to debug Tcl programs. You can download the latest version of
ActiveTcl from the ActiveState website.

• 

GUI Builder Prerequisites:

Installing Komodo 3.0 390/437

http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/
http://www.php.net/downloads.php
http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging
http://www.ActiveState.com/Products/ActiveTcl


Perl Dialogs created with the GUI Builder: Require the Perl Tk module. This module has been
included with ActivePerl since build 631. If necessary, manually install using the command
"ppm install Tk".

• 

Python Dialogs created with the GUI Builder: Require Python version 1.5.2 or greater.• 
Tcl Dialogs created with the GUI Builder: Require Tcl version 8.3 or greater.• 

Source Code Control Integration Prerequisites:

CVS Source Control Integration: Requires CVS, which is available from
http://www.cvshome.org.

• 

Perforce Source Control Integration: Requires a connection to a Perforce server with version
99.1 or later.

• 

Miscellaneous Prerequisites:

Komodo Documentation: Komodo's documentation is displayed within the system's default
browser. Supported browsers include Mozilla 1.0 or greater (and all browsers based on Mozilla
1.0 or greater), Opera 6 or greater, Internet Explorer 5 or greater and Konqueror version 3.0.3 or
greater. JavaScript and cookies must be enabled.

• 

The Visual Package Manager: requires ActivePerl Build 633 or later.• 
Web Services To use Web services in Perl or Python programs, ActivePerl and / or ActivePython
are required.

• 

Adding Perl or Python to the PATH Environment Variable

To add Perl or Python to thePATH environment variable, do one of the following:

Modify your PATH environment variable. For example, if you use the Bash shell, add the
following line to your ~/.bashrc file:

export PATH=<installdir>/bin:$PATH

...where <installdir> points to the directory where you installed ActivePerl or ActivePython.

• 

Create a symbolic link to the Perl or Python executable. For example, for ActivePerl, enter:

ln −s <installdir>/bin/perl /usr/local/bin/perl

For ActivePython, enter:

ln −s <installdir>/bin/python /usr/local/bin/python

...where <installdir> points to the directory where you installed ActivePerl or ActivePython.

• 

Installing Komodo 3.0 391/437

http://www.cvshome.org
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/


Upgrading from Previous Komodo Versions

To determine your current Komodo version, select Help|About Komodo.

Uninstalling

Unless you are currently using a beta version of Komodo, it is not necessary to uninstall previous
versions before installing Komodo 3.0 as long as the new version is installed in its own new directory.
The Komodo 3.0 installation imports settings from previous Komodo versions.

If you want to replace an existing Komodo installation with the latest version, or if you are currently
using a beta version, uninstall the existing version before installing the new one.

If you want to run two versions of Komodo, ensure they are installed in separate directories with unique
names.

Remote Debugging

This version of Komodo contains updated remote debugging extensions. Refer to the Remote Debugging
instructions for information about updating the extension.

Debugging Perl Remotely• 
Debugging Python Remotely• 
Configuring the PHP Debugger• 
Using the Tcl Remote Debugger• 

Installing Komodo on Linux

This version of Komodo allows non−root installation on Linux. Note, however, that the user who
executes the license file will be the user who is licensed to use the software.

To install Komodo on Linux:

Ensure you have the prerequisite hardware and software.1. 
Create a temporary directory into which you will download the Komodo installer file. You will
delete this directory after the installation procedure is complete.

2. 

Download the Komodo installer file (with the extensiontar.gz) into the temporary directory.3. 
Crack the tarball. When you enter the command below, it will unpack the file into a directory
with the same name as the Komodo tar.gz file. From the command line, enter:

tar −xvzf Komodo−<version>−<build>−linux−ix86.tar.gz

...where <version> is the version of Komodo and <build> is the Komodo build number.

4. 

Installing Komodo 3.0 392/437



Change to the new directory. From the command line, enter:

cd Komodo−<version>−<build>−linux−ix86

5. 

Run the install script ("install.sh"). From the command line, enter:

./install.sh

6. 

Answer the installer prompts:7. 

Specify where you want Komodo installed or press Enter to accept the default location
(/home/user/Komodo−x.x).

If multiple users are sharing the system and will be using the same installation, install
Komodo in a location every user can access (e.g./opt/Komodo−x.x/ or
/usr/local/Komodo−x.x/).

Note: Each Komodo user requires an individual license key.

Do not install Komodo in a path that contains spaces or non−alphanumeric characters.

Be sure to install Komodo into a directory with a unique name. Do not install Komodo
directly in a generic directory containing numerous shared files and directories (such as
/usr/local) because Komodo does not divide its installed files into bin, lib,
include, share, and etc subdirectories.

♦ 

Verify you have enough disk space.♦ 
Note − The installer will not install Komodo into a directory where Komodo is already installed.
Be sure to install Komodo into a directory with a unique name.

Add the Komodo directory to your path. To do this, either:

Modify your PATH environment variable. For example, if you use the Bash shell, put the
following in your~/.bashrc file:

export PATH=<installdir>:$PATH

...where <installdir> points to the location where Komodo was installed.

♦ 

Create a symbolic link to the Komodo executable (not to the bin directory). For example:

ln −s <installdir>/komodo /usr/local/bin/komodo

♦ 

8. 

Installing Komodo 3.0 393/437



...where <installdir> points to the directory where Komodo was installed.

When installation is complete, you can delete the temporary directory where the Komodo tarball was
cracked.

The Komodo license will be sent to the email address you provided during registration. You must install
this license. Otherwise, you will get an error if you select the "License" link from within Komodo.

To make the license executable, enter:

chmod +x <filename>

1. 

To run the license, enter:

./<filename>

2. 

Starting Komodo on Linux

To start Komodo on Linux:

If necessary, open the graphical shell by enteringstartx.• 
Open the GUI terminal emulator, and enterkomodo.• 

Uninstalling Komodo on Linux

Use the procedure only if you want to fully remove Komodo from your system.

Note that you cannot relocate an existing Komodo installation to a new directory. You must uninstall
Komodo from the existing location and reinstall it in the new location.

To uninstall Komodo on Linux:

Delete the directory that Komodo created during installation.1. 
If you wish to delete your Komodo preferences, delete the~/.komodo directory. If you do not
delete this directory, subsequent installations of Komodo will use the same preferences.

2. 

Installing Komodo 3.0 394/437



Solaris

Prerequisites

Hardware Prerequisites

Sun Sparc architecture• 
UltraSparc IIe or faster CPU recommended• 
256MB RAM min, 512MB recommended• 
100 MB hard disk space• 
up to 200 MB of temporary hard disk space during installation• 

Operating System Requirements

Solaris 2.8 or later.• 

Note − Komodo Personal Edition is not available for Solaris.

Software Prerequisites

Installation Prerequisites:

GNU tar: is required for unpacking the Komodo installation file. If you use the native Solaris tar
version, you will get a checksum error when attempting to unpack the Komodo tar package, and
any attempt to run the install script will fail.

• 

Language and Debugging Prerequisites:

Debugging:
Python, XSLT and PHP require TCP/IP to be installed and properly configured, even if
you are debugging scripts locally.

♦ 

If firewall software is installed on the system, it must be configured to allow Komodo to
access the network during remote debugging.

♦ 

• 

Perl: Perl 5.6 or greater is required to debug Perl programs. You can download the latest version
of ActivePerl from the ActiveState website. Ensure that the directory location of the Perl
interpreter is included in your system'sPATH environment variable. See Adding Perl or Python
to the PATH Environment Variable for instructions. Some advanced editing features, such as
background syntax checking, also require that you have Perl installed.

• 

Python: Python 1.5.2 or greater is required to debug Python programs. You can download the
latest version of ActivePython from the ActiveState website. Ensure that the directory location of
the Python interpreter is included in your system'sPATH environment variable. See Adding Perl
or Python to the PATH Environment Variable for instructions. Some advanced editing features,
such as background syntax checking, also require that you have Python installed.

• 

PHP: PHP 4.0.5 or greater is required for PHP syntax checking. PHP 4.3.1 or greater is required
to debug PHP programs. Debugging and syntax checking are also available for PHP 5.
Download PHP from http://www.php.net/downloads.php. For complete instructions for

• 

Installing Komodo 3.0 395/437

http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/
http://www.php.net/downloads.php


configuring Komodo and PHP, see Configuring the PHP Debugger. PHP debugging extensions
are available on ASPN, the ActiveState Programmer Network.
Tcl: Tcl 7.6 or greater is required to debug Tcl programs. You can download the latest version of
ActiveTcl from the ActiveState website.

• 

GUI Builder Prerequisites:

Perl Dialogs created with the GUI Builder: Require the Perl Tk module. This module has been
included with ActivePerl since build 631. If necessary, manually install using the command
"ppm install Tk".

• 

Python Dialogs created with the GUI Builder: Require Python version 1.5.2 or greater.• 
Tcl Dialogs created with the GUI Builder: Require Tcl version 8.3 or greater.• 

Source Code Control Integration Prerequisites:

CVS Source Control Integration: Requires CVS, which is available from
http://www.cvshome.org.

• 

Perforce Source Control Integration: Requires a connection to a Perforce server with version
99.1 or later.

• 

Miscellaneous Prerequisites:

Komodo Documentation: Komodo's documentation is displayed within the system's default
browser. Supported browsers include Mozilla 1.0 or greater (and all browsers based on Mozilla
1.0 or greater), Opera 6 or greater, Internet Explorer 5 or greater and Konqueror version 3.0.3 or
greater. JavaScript and cookies must be enabled.

• 

The Visual Package Manager: requires ActivePerl Build 633 or later.• 
Web Services To use Web services in Perl or Python programs, ActivePerl and / or ActivePython
are required.

• 

Installing Komodo on Solaris

This version of Komodo allows non−root installation on Solaris. Use this procedure for installing
Komodo.

To install Komodo on Solaris:

Ensure you have the prerequisite hardware and software.1. 
Download the Komodo installer file (with the extensiontar.gz into a temporary directory.
You need a temporary directory to crack the tarball. You will not install Komodo in this
temporary directory.

2. 

Using GNU tar, crack the tarball into the temporary directory. This unpacks the file into a
directory with the same name as the Komodo tar.gz file. From the command line, enter:

tar −xvzf Komodo−<version>−<build>.tar.gz

3. 

Installing Komodo 3.0 396/437

http://aspn.ActiveState.com/ASPN/Downloads/Komodo/RemoteDebugging
http://www.ActiveState.com/Products/ActiveTcl
http://www.cvshome.org
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePerl/
http://www.ActiveState.com/Products/ActivePython/


...where <version> is the version of Komodo and <build> is the Komodo build number.
Change to the new directory. From the command line, enter:

cd Komodo−<version>−<build>

4. 

Run the install script ("install.sh"). From the command line, enter:

./install.sh

5. 

Answer the installer prompts:
Specify where you want Komodo installed or press Enter to accept the default location
(/home/user/Komodo−x.x).

If multiple users are sharing the system and will be using the same installation, install
Komodo in a location every user can access (e.g./opt/Komodo−x.x/ or
/usr/local/Komodo−x.x/).

Note: Each Komodo user requires an individual license key.

Do not install Komodo in a path that contains spaces or non−alphanumeric characters.

Be sure to install Komodo into a directory with a unique name. Do not install Komodo
directly in a generic directory containing numerous shared files and directories (such as
/usr/local) because Komodo does not divide its installed files into bin, lib,
include, share, and etc subdirectories.

♦ 

Do not install Komodo in a path that contains spaces or non−alphanumeric characters.

6. 

Verify you have enough disk space.7. 

Note − The installer will not install Komodo into a directory where Komodo is already installed.
Be sure to install Komodo into a directory with a unique name.

Add the Komodo directory to your path. To do this, either:
Modify your PATH environment variable. For example, if you use the Bash shell, put the
following in your~/.bashrc file:

export PATH=<installdir>:$PATH

...where <installdir> points to the location where Komodo was installed.

♦ 

Create a symbolic link to the Komodo executable (not to the bin directory). For example:

ln −s <installdir>/komodo /usr/local/bin/komodo

...where <installdir> points to the directory where Komodo was installed.

♦ 

8. 

When installation is complete, you can delete the temporary directory where the Komodo tarball was
cracked.

The Komodo license will be sent to the email address you provided during registration. You must install

Installing Komodo 3.0 397/437



this license. Otherwise, you will get an error if you select the "License" link from within Komodo.

Starting Komodo on Solaris

To start Komodo on Solaris:

If necessary, open the graphical shell by enteringstartx.• 
Open the GUI terminal emulator, and enterkomodo.• 

Uninstalling Komodo on Solaris

Use the procedure only if you want to fully remove Komodo from your system.

Note that you cannot relocate an existing Komodo installation to a new directory. You must uninstall
Komodo from the existing location and reinstall it in the new location.

To uninstall Komodo on Solaris:

Delete the directory that Komodo created during installation.1. 
If you wish to delete your Komodo preferences, delete the~/.komodo directory. If you do not
delete this directory, subsequent installations of Komodo will use the same preferences.

2. 

Installing Komodo 3.0 398/437



Release Notes
Welcome to Komodo, ActiveState's Integrated Development Environment (IDE). This document
accompanies Komodo version 3.0.

New in Komodo 3.0• 
Release History• 
Known Issues• 

Komodo 3.0: July 2004

This release includes the following new features and bug fixes:

Code Intelligence

Komodo's Code Intelligence system is a set of tools that supports multiple languages. The Code
Intelligence tools include the Code Browser, Object Browser and Python AutoComplete and CallTips.
All Code Intelligence tools require a Code Intelligence database to operate fully.

The Object Browser is a graphical browser that searches the Code Intelligence database for specified
code symbols and modules. Use the Object Browser's preview pane to view code snippets containing the
search criteria.

The Code Browser displays on the Code tab next to the Projects tab in the Left Pane. The Code Browser
displays a hierarchical tree view of all code constructs (for example, variables, methods, imports) in all
open files. For Python, instance attributes are all displayed. The code tree, which can be navigated using
either the keyboard or mouse, includes the following features:

Double−click a node to jump to that point in the code.• 
When the cursor is positioned in the Editor Pane, clicking the Locate current scope button on the
Code Toolbar or pressing 'Ctrl'+'K', 'Ctrl'+'L' causes Komodo to jump to the node in the code tree
that most closely matches the current point in the program. Additionally, a Scope Indicator,
located in the status bar, displays the current scope of a selected code construct. Double−click
the Scope Indicator to open the tree hierarchy to the code construct.

• 

When the focus is in the Code Browser tree, pressing the 'Tab' key causes Komodo to shift to the
Filter text box. Typing any string in this text box causes the Code Browser to display all of the
nodes matching that string. Pressing 'Tab' again shifts the focus back to the tree. Clearing the
Filter text box returns the tree to its original state. Note that all matching nodes are shown, even
those that are invisible because their parents were not "expanded".

• 

The Sort menu on the Code Toolbar lets you toggle whether the nodes at each level of the tree
are sorted in alphabetical order or according to the order they occur in the file.

• 

The Code Description pane, located in the lower part of the Code Browser, displays additional
documentation (when available) on various program components.

• 

Python AutoComplete and CallTips are enhanced with the Code Intelligence database.

Release Notes 399/437



Interactive Shell

The interactive shell is an implementation of Perl, Python and Tcl's interactive shell within Komodo. The
interactive shell supports, AutoComplete, CallTips, debugging functions, customization and history
recall.

Debugging

A debugger proxy is available that enables multiple users to debug with Komodo on the same
machine.

• 

The Breakpoints tab in the Bottom Pane of the Komodo workspace is designed for convenient
management of breakpoints and Tcl spawnpoints. This tab displays enabled and disabled
breakpoints and spawnpoints. Double−clicking an enabled or disabled breakpoint on the
Breakpoints tab opens the related file in the Editor Pane and shifts focus to the line in the
program associated with that breakpoint.

• 

Komodo now handles multi−session debugging. Komodo can debug multiple programs,
regardless of the supported languages used in the applications being concurrently debugged.

• 

The Bottom Pane of the Komodo workspace (previously the Output Pane) has been reorganized
and enhanced. The new Debug tab is displayed whenever a Komodo debugging session is
launched.

• 

A Debug Toolbar is available on the Debug tab in the Bottom Pane of the Komodo workspace. It
includes additional controls for detaching from a new debugging session and forcing a break.

• 

New remote debugging features include the ability to listen for remote debugger sessions
continuously, set remote debugger preferences, and check the listener status of the current
configuration.

• 

The new debugger properties dialog box supports multiple 'configurations' to be saved per file.• 
The new Debugger dialog box (displayed when a debug session is invoked) supports
configurable interpreter arguments.

• 

The Disable Output Buffering and Enable Implicit Flush options for PHP debugging have no
effect when Simulate CGI Environment is selected. To disable output buffering in CGI
emulation mode, manually comment out the output_buffering setting in php.ini with a ";"
character, or set it to "off".

• 

Rx Toolkit

The Rx Toolkit has been completely overhauled. New features include:

Match Type buttons that set the match mode for the regular expression. The buttons represent
functions that let you Match, Match All, Split, Replace and Replace All.

• 

For Python regular expressions, there are two new modifiers: Unicode and Locale.• 

Multi−User Features

A Shared Toolbox with functionality similar to the standard Toolbox makes it possible for
multiple users to share items such as run commands and code snippets. The Shared Toolbox is
enabled via a check box on the Shared Support page of Komodo Preferences.

• 

Release Notes 400/437



Users can accept a default Common Data Directory or specify a custom location via the new
Shared Support page in Komodo Preferences.

• 

Multiple users can share .tip, .pcx and .pdx files and preferences.• 

Enhanced Search Functionality

The new Open/Find Toolbar makes it easier to open files and search for strings in currently open
files.

• 

A Find in Files dialog box is used to search for files that are not currently open.• 

Macro Enhancements

A Macro Toolbar provides a quick and easy way to record, pause, play, stop and save macros.• 
Macros are no longer stored as separate files (as they were in 2.x). Because macro content is now
included in a macro item, it is easier to share macros between multiple users.

• 

The Properties dialog box for macros contains a window in which macros can be coded in either
JavaScript or Python.

• 

Triggers can be set so that macros execute as a result of specific Komodo events.• 
The documentation includes a macro API.• 

Custom Toolbars, Menus and Icons

Create Custom Toolbars and Menus for frequently used components. Custom Toolbars are displayed
beneath the existing toolbars; custom menus are added to Komodo's top−level menu, between the Tools
and Windows menus. Custom icons can be assigned to components like run commands, snippets, etc.

Editing Enhancements

Reflow Paragraph• 
Join Lines• 
Enter Next Character as Raw Literal• 
Repeat Next Keystroke N Times• 
Emacs−style "marks"• 
Clean Line Endings on save• 

Miscellaneous

PHP 5 is supported.• 
Support for Web services has been deprecated. Note that this will not prevent the use of Web
services in applications developed in Komodo.

• 

Users familiar with the Emacs editor can configure Komodo to use Emacs key bindings and set a
File Associations preference so that Komodo checks for an embedded Emacs mode specification.

• 

Support for Tcl has been improved to include more detailed logging and additional syntax
checking options.

• 

Two new interpolation shortcuts (%L and %P) can now be used in the Run Command dialog• 

Release Notes 401/437



box.
Users now have the option to assign custom icons to Komodo components (snippets, run
commands, etc).

• 

Printing features for specifying line wrapping and font scaling have been added to the Printing
page in Komodo Preferences. This page is now also accessible by clicking Print Settings on the
File menu.

• 

Components from Projects or the Toolbox can be exported to a self−contained archive for
distribution to other users. The import and export wizards are invoked via the right−click context
menu in the Project or Toolbox tab, or from the Toolbox menu.

• 

Perl, Python and Tcl preferences include the ability to specify import directories.• 
On the Editor|Key Bindings preference page, the keybindings list can be filtered.• 

Documentation

The new Feature Showcases are quick demos of Komodo features.• 
Komodo Help now displays in a selected web brower.• 
Improved search capabilities, including phrase search and result ranking, make it easier to locate
specific information.

• 

The documentation includes an index.• 
A PDF file of the complete documentation set makes it possible to quickly create a print version
of Komodo's documentation. Click the PDF link to the right of the Search tab to view and/or
print the PDF file.

• 

Context−sensitive Help buttons have been added throughout the Komodo workspace.• 
The documentation includes a macro API.• 

To view the complete list of bugs fixed in this release, see http://bugs.activestate.com.

Release History

Komodo 3.0 Beta 4: June 2004

Komodo 3.0 Beta 3: May 2004

Komodo 3.0 Beta 2: May 2004

Komodo 3.0 Beta 1: May 2004

Komodo 2.5.2: January 2004

This release contains bug fixes for Komodo 2.5 and 2.5.1, including:

Intermittent crashes were occurring on Linux, caused by the autosave feature.• 
On Linux, the Internationalization dialog in Komodo's Preferences was generating an error.• 

Release Notes 402/437

http://bugs.activestate.com


Perl's Visual Package Manager was not always reporting a startup failure to the user.• 
Autocomplete for Perl and Python did not work.• 
Intermittently, the variable type indicator (i.e., $, @, %) was not being selected when
double−clicking on a variable in the editor pane.

• 

Umlaut characters were causing file contents to be lost on save.• 
CVS source code control integration functions were not available on directories or projects.• 
The Tcl statementsource file was not finding the specified file.• 
There were errors in Tcl syntax checking.• 
CVS source code control integration was generating errors on Solaris.• 
There were debugging errors when working with Tcl scripts on Solaris.• 
When adding template items to a project or the Komodo Toolbox, it was not possible to cancel
the file selection operation.

• 

The CVS source code control integration now supports use of a local repository.• 
The update function in Komodo's source code control integration was not functioning under
certain circumstances.

• 

On Solaris, it was not possible to create a file on an NFS−mounted disk.• 
Regardless of the setting for line endings, new files were created with DOS/Windows line
terminators.

• 

Perl brace matching could cause Komodo to lock up under certain circumstances.• 
XML autocomplete could cause Komodo to lock up.• 
During a workspace restoration, if multiple files contained breakpoints, the breakpoints were not
being written to Komodo's breakpoint manager and would have to be manually re−set.

• 

After debugging, debugger arrows were still active on files that had been stepped into.• 
Files names that included spaces could not be added to projects.• 
Under certain circumstances, Komodo would not start on Red Hat version 8.• 
Autosave functionality is now more robust.• 
Under certain circumstances, opening files resulted in a blank page in the editor pane.• 
On Linux, the debug session would occasionally hang due to problems with the remote debug
listener.

• 

Komodo 2.5.1: October 2003

This release contained bug fixes for Komodo 2.5. The only user−visible changes were:

When clickable links are displayed in the Output Pane, you must double−click (rather than single
click) to follow the link. This allows for portions of the link to be selected via single−clicks. The
link is no longer underlined.

• 

The default Perl remote debugging port has changed from 9010 to 9011 (due to a conflict with
the XIM server on UNIX). To use the new port, alter the PERLDB_OPTS setting on the remote
machine. If you are invoking the Komodo debugger via the Perl Dev Kit's −debug switch, ensure
that the specified port number matches the Komodo's port number.

• 

The menu link for the Start Page has been moved from the Help menu to the Windows menu.• 
The Close All menu option no longer closes the Start Page.• 
The Internationalization preference page for language encodings has changed.
Programming−language specific encodings are now used for existing files, as well as new files.

• 

Release Notes 403/437



The following major bugs were fixed:

The highlighting of selected text was not released if the mouse pointer moved outside of the
editor pane.

• 

Komodo Personal failed to start up properly if the Show Button Text option was enabled.• 
Background syntax checking would cease to function.• 
Saving of remote files failed for long editing sessions.• 
Remote debugging didn't honor Perl breakpoints.• 
The Rx window could hang.• 
Hotspots in the Output pane were generated for spurious lines and the dialog was hard to
dismiss.

• 

Installing web services for Perl 5.8 is fixed.• 
The Build Standalone Perl Application dialog didn't deal well with scripts with UNC filenames
(\\machine\drive\...).

• 

Printing collapsed whitespace in the middle of lines.• 
The ability to show diffs in an editor tab wasn't working.• 

Komodo 2.5 for Windows, Linux: September 2003

General

Komodo's speed has been boosted through re−engineering, resulting in quicker times for startup,
tab−switching, loading of dialogs, as well as overall performance gains.

• 

Menus have been re−organized, and new items have been added. Every Komodo feature can now
be accessed through the top−level menus.

• 

The Preferences pages and a number of existing dialogs have been improved and reorganized for
ease−of−use. Changed dialogs include those associated with current file settings, templates,
source code control, remote files, and the Perl Dev Kit.

• 

Templates can now use the same interpolation shortcuts as commands and snippets. Prior to
Komodo Version 2.5, a set of variables could be used to embed the current date and time in files
created from custom templates. The old codes have been deprecated and will be removed in the
next Komodo release.

• 

The Show Unsaved Changes command, previously exclusive to the Editor context menu, has
been added to the File menu.

• 

A new Compare Files feature on the Tools menu provides a quick and easy way to locate and
"diff" two files.

• 

A Word Wrap command has been added to the View menu.• 
A Tcl tutorial has been added to Komodo's set of language tutorials. Another new tutorial, the
Komodo Tour, provides an introduction to the program's key features.

• 

ASPN Cookbook integration is no longer supported.• 

Workspace

Changes have been made to make more efficient use of the Komodo workspace:
A Full Screen command has been added to the View menu.♦ 
The Toolbox and Project Manager, which previously appeared in separate panes, are♦ 

• 

Release Notes 404/437



now contained in single pane. You can select Projects/Toolbox Pane from the View
menu to show or hide this pane.
Toolbar button text is not displayed by default. Hiding the button text makes it possible
for the toolbars to share a single row.

♦ 

The functionality of Komodo's ancillary windows has been enhanced. The Debug Output,
Command Output, and SCC Output tabs in the Output Pane offer context menus with access to a
subset of the top−level View menu. There are key bindings for each of the context menu items.
The same context menu is available in the "diff" window, which is invoked by either the Show
Unsaved Changes command or the Compare Files command. The ancillary windows also
support "hot−spotting". If Komodo detects a file reference, it will create a hot spot that links to
the file itself.

• 

Interpreter errors displayed in the Output Pane are now hyperlinks to the relevant line.• 
Ctrl+Tab functionality is now supported in all of the panes in the Komodo workspace. Earlier
versions of Komodo supported tab−switching in the Editor Pane only.

• 

The Output tab and the Variables tab are now known as the Debug Output tab and Debug
Variables tab, respectively.

• 

The "grippies" used to show and hide the panes in the Komodo workspace have been abandoned
in favor of "x" close buttons.

• 

Project Manager and Toolbox

The new Toolbox menu provides functionality for importing and exporting items, along with
other commands that were previously exclusive to the Toolbox context menu. The
Projects/Toolbox Pane contains the Projects tab and the Toolbox tab. You can show or hide the
Projects and Toolbox tabs by pressing Ctrl+Shift+P and Ctrl+Shift+T, respectively.

• 

Editor

Additions to the Window menu offer new display options for the Editor Pane. Selecting Split
View divides the Editor Pane in two, so that you can preview files (e.g., HTML or XML) or
compare two files. Select Rotate Tab Groups to toggle vertical and horizontal variations of the
split view.

• 

The View As Language item on the View menu now has a submenu item called Reset to best
guess. Select this item to ignore the user preference, and analyze the file in an attempt to
determine its language.

• 

Change the language of an open file by right−clicking the name of the language on the status bar
and selecting a language from the pop−up menu.

• 

A new Smart Editing preference gives you the choice of configuring the Tab key instead of
Ctrl+Space to trigger Komodo's word−completion feature.

• 

The Go To Line dialog box now supports entries that are relative to the current line. For
example, instead of entering a specific line number, you can enter "+10" or "−10" to move ten
lines forward or back.

• 

There are some changes to the default key bindings. For a complete listing of default key
bindings, select Help|List Key Bindings.

• 

The Ignore Hidden Text option has been removed from the Find dialog box.• 
Komodo now supports editing with non−English characters, based on the locale specified in the
regional settings for Windows. See Customizing International Encodings for more information.

• 

Release Notes 405/437



Web and Browser

A Preview in Browser command is now available through the View menu and the main toolbar.
Depending on how the Web and Browser preferences are configured, this command will display
a preview in one of three ways:

• 

in the Editor Pane♦ 
side−by−side with the source code in a split view of the Editor Pane♦ 
in a separate window♦ 

GUI Builder

GUI Builder functionality has been extended to include language−specific widget palettes that
are displayed according to the initial language selection. In addition, a greater variety of widgets
is available.

• 

The new Dialog tab displays an interactive organizational map that makes it easier to plan and
manage the structure of dialogs.

• 

The new Menu tab is used to create drop−down menus. The Menu tab features an additional
widget set used to create standard menu commands, as well as commands with check box or
radiobutton behavior.

• 

Printing

The new Page Setup options used to set orientation, margins, and headers and footers can now be
accessed from the File menu.

• 

A new Print Preview command has also been added to the File menu. In addition to navigation
buttons for viewing multi−page print jobs, the preview window offers access to Page Setup
options. As a result, printing preferences available in Komodo 2.3, including Print Line Wrap
Markers, Characters per line and Font Size Adjustment, have been removed.

• 

Selecting the Print to HTML command now opens the generated file.• 

Fonts and Colors

The Fonts and Colors preferences have been streamlined to make managing these settings easier.
You can create new font and color schemes based on the default scheme. In addition to
Language−Specific Coloring, you can now set Common Syntax Coloring to specify the settings
for elements used in multiple languages.

• 

Debugging

A Run Without Debugging item has been added to the Debug menu, providing a faster way to
run scripts in Komodo.

• 

A new debugging preference, Try to find files on the local system when remote debugging, has
been added. When this preference is turned on, Komodo will search for the debugger file on the
local system instead of automatically opening a read−only version of the file retrieved from the
debug engine.

• 

Komodo now offers full support for Tcl debugging. In addition, runtime Tcl syntax checking no
longer requires the Tcl Dev Kit.

• 

Release Notes 406/437



Source Code Control

The Automatically check out before save option has been moved from "General Source Code
Control Preferences" to "Perforce" Preferences, where it appears as Automatically open files for
edit before save.

• 

Komodo 2.5 Technology Preview 1 for Solaris: August 2003

Komodo 2.5 Beta 1 for Windows, Linux: August 2003

Komodo 2.5 Alpha 2: July, 2003

Komodo 2.3: February, 2003

General

Compatibility issues with ActivePerl 5.8 (VPM), PHP 4.3 (syntax checking) and Python 2.2.2+
(debugging) have been resolved.

• 

The XSLT engine has been upgraded to Xerces 2.1 and Xalan 1.4, and includes built−in
extensions for that version. (Refer to http://xml.apache.org/xalan−c/extensionslib.html for
information about extension support.)

• 

The new Windows Integration page in the Komodo Preferences is used to configure
system−wide file associations.

• 

The Projects and Workspace page in Komodo can be used to have Komodo prompt you to open
recent files and projects when you start the program.

• 

The configuration of the Komodo workspace is restored after closing and re−opening Komodo.• 

PHP Configuration Wizard

The PHP Configuration Wizard simplifies the previously cumbersome process of configuring
PHP debugging extensions in Komodo.

• 

Run Command

The Run Command function has been enhanced, and a new Run Command Tutorial has been
added.

• 

Toolbox

Snippets now support shortcut codes. To view the supported shortcuts, right−click a snippet,
select Properties, and click the arrow button in the Properties dialog.

• 

The new Add "Open..." Shortcut... item on the Toolbox menu is used to create shortcut links in
the Toolbox to directories. Key bindings can be assigned to these links.

• 

Items can be exported from the Toolbox. Select the desired items, then right−click and select
Export as Project File....

• 

Release Notes 407/437



Exported Toolbox items can be imported using the Import into Toolbox... menu item, accessible
from the Toolbox menu.

• 

The new Compare File With... item on the file context menus in the Toolbox and Project
Manager is used to compare the selected file with another file selected via a file picker dialog.

• 

Project Manager

Projects load much faster than in previous versions.• 
Snippets now support shortcut codes. To view the supported shortcuts, right−click a snippet,
select Properties, and click the arrow button in the Properties dialog.

• 

The new Add "Open..." Shortcut... item on the Project Manager menu is used to create shortcut
links in the Project Manager to directories and URLs. Key bindings can be assigned to these
links.

• 

The new Compare File With... item on the Project Manager menu is used to compare the
selected file with another file selected via a file picker dialog.

• 

When a project has been changed, it can be reverted to its last saved state using the Revert
Project menu item.

• 

Many settings now persist in Komodo's projects, including debugging options and Import from
File System settings.

• 

The Import from Filesystem function prompts if you want to install all the files in a filesystem,
and allows you to deselect desired files.

• 

After using the Import from Filesystem function, if you attempt to import the same filesystem
location into the same project, only files that are new since the last import will be imported.

• 

SCC Integration

If you are using Komodo's Perforce integration, you can now specify an external "diff" tool.• 
The "diff" window displays the original content and the new content in different colors.• 
The "diff" window supports function keys to navigate to changes in the file.• 

Editor

Select Show Unsaved Changes from the Editor context menu to view the differences between
the version of the file currently displayed in the Editor Pane and the last saved version of the file.

• 

Breakpoints and code folding information is stored with the file, and therefore does not need to
be reconfigured when the file is closed and re−opened.

• 

There is a new automatic indentation style ("Indent to first non−empty column") that can be
configured using Komodo's Indentation preferences.

• 

The symbols used to indicate folded sections of code (and sections of code that can be folded)
can be configured on the Editor|Indentation page of the Komodo Preferences.

• 

You can change Read Only status of a file in the file's preferences. Access the file preferences by
right−clicking the file in the Editor Pane and selecting Properties and Settings.

• 

If you change and save a file with a Read Only status, you will be given the option to "force" the
write. This will remove the Read Only flag, save the changes, then reset the Read Only flag.

• 

You can specify the language association for an open file in the file's preferences. Access the
preferences for the current file by right−clicking the file in the Editor Pane and selecting
Properties and Settings. Use the Reset button to reassert the language associated with the file

• 

Release Notes 408/437



type.
Various editor bugs have been fixed, including intermittent failure of the paste function, periodic
hanging when large projects were being opened, Perl syntax checking problems and lost code
folding after tab switching.

• 

GUI Builder

In Komodo's Preferences, you can specify the preferred port that the GUI Builder will use.• 
There are now no constraints for user code added to Python files generated by the GUI Builder.• 

PDK Support

Komodo 2.3 supports version 5 of the Perl Dev Kit, including the new PerlNET and PerlTray
components.

• 

Support for all the Perl Dev Kit tools has been enhanced.• 
When the Build Standalone Perl Application function is used, settings in the dialog are stored
with the file.

• 

Komodo 2.3 beta 2: February, 2003

Komodo 2.3 beta 1: January, 2003

Komodo 2.0.1 for Linux: November, 2002

See Komodo 2.0 for Windows for a list of 2.0 features included in version 2.0.1 for Linux.• 
International Encoding support now works with European and Cyrillic character sets. Configure
encoding support on the Internationalization page of Komodo Preferences.

• 

a new Web Preferences page, used to specify the default browser• 
additional Run Command Shortcuts• 

Komodo 2.0.1 for Windows: October, 2002

Komodo 2.0 beta 3 for Linux: October, 2002

Komodo 2.0 beta 2 for Linux: September, 2002

Komodo 2.0 for Windows: September, 2002

Project Manager• 
add Run commands to projects♦ 
add GUI dialogs to projects (Komodo Pro)♦ 
add Web services to projects♦ 
add macros to projects♦ 
add code snippets to projects♦ 
organize objects into folders♦ 

Release Notes 409/437



import groups of files from the filesystem♦ 
organize the order of objects in projects♦ 
drag items to and from the Project Manager to the Toolbox and Editor♦ 

Toolbox• 
add Run commands to the Toolbox♦ 
add GUI dialogs to the Toolbox (Komodo Pro)♦ 
add Web services to the Toolbox♦ 
add macros to the Toolbox♦ 
add code snippets to the Toolbox♦ 
add code snippets to the Toolbox♦ 
organize objects into folders♦ 
drag items to and from the Toolbox to the Project Manager and Editor♦ 

Customizable Key Bindings for standard Komodo functions, and for macros and Run commands• 
Source Code Control integration for CVS and Perforce (Komodo Pro)• 
Visual Package Manager integration (Komodo Pro)• 
GUI Builder for building graphical applications (Komodo Pro)• 
Macros for recording and repeating common keystroke sequences• 
Create code snippets by selecting code in the Editor Pane and dropping it into the Project
Manager or Toolbox

• 

Enhanced "Run" Command
save run command to the Toolbox♦ 
new shortcuts, including escaped % symbol, URL−escaped selection, etc♦ 
specify starting directory for command♦ 
specify run location (output window, new console, no console)♦ 
specify environment variables♦ 
save advanced options (such as environment variables) as Run command defaults♦ 

• 

Function Search to quickly find Perl packages and subs, Python or PHP classes and functions,
and Tcl procs

• 

Incremental Search• 
HTML Preview Tab• 
Customizable Language Help• 
Customizable Cursor, Current Line, Selection and Background Colors• 
"Mark All" option in Find dialog• 
"Remove All Bookmarks" command• 
Printing enhancements• 
Background Syntax Checking• 

hover mouse over icon for total number of errors and warnings♦ 
double−click icon to move the editing cursor to the next error or warning♦ 

Tip of the Day• 
Ctrl+Tab switches between the two most recently opened or edited files• 
Ability to re−order open files by dragging−and−dropping file tabs in the Editor Pane• 
File tab context menu with common file tasks, such as saving and accessing source code control
commands

• 

Ctrl+X and Ctrl+C take entire lines if no text is selected, and will continue to accumulate lines• 
Ctrl+Shift+V pastes and selects the pasted text• 
Improved word wrapping• 
Partial word movement• 

Release Notes 410/437



Overtype / insert toggle support• 
Search through the document for the word under the cursor• 
Web service proxies in Perl programs• 
Brace matching• 
Transposing characters• 
Literal characters• 

Komodo 2.0 beta 2 for Windows: September, 2002

Komodo 2.0 beta 1 for Linux: September, 2002

Komodo 2.0 beta 1 for Windows: August, 2002

Komodo 1.2.9: July, 2002

The following issues were addressed in Komodo 1.2.x releases:

Editor

(Windows only) Syntax checking now works properly for files located on a network.• 
(Tcl, Perl and PHP) Double−clicking variables now selects the variable prefix.• 
When dragging and dropping text into the Editor Pane, Komodo no longer attempts to open a
new file.

• 

When dragging and dropping text from the Editor Pane to other parts of Komodo, Komodo was
crashing. This has been fixed.

• 

When calltips are displayed, tip highlighting now progresses as statement components are
entered in the editor.

• 

When opening large HTML files in the editor, Komodo no longer displays a syntax error
warning.

• 

Search and replace strings containing backslashes are now handled properly.• 
The error regarding invalid regular expressions during search and replace has been fixed.• 
Templates in language directories are now correctly included in the language categories.• 

General Debugging

Watched variables can be manipulated regardless of whether the debugger is running.• 
When the debugger is running, use Ctrl+F10 to run the debugger to the current cursor position.• 
When the debugger is running, the current line is now highlighted. The highlighting is dimmed
when a stack other than the current stack is selected.

• 

The debugger now positions the current line in the middle of the Editor Pane.• 

Perl Editing and Debugging

Socket errors in Perl debugger connections have been fixed by the addition of a new
configuration item. Select Edit|Preferences|Debugger, and enter the socket port in the Perl
Listener Port field. The "CallKomodo" configuration of the PERLDB_OPTS is no longer used,

• 

Release Notes 411/437



and can be removed. See Debugging Perl Remotely for more information.
Support for the overload.pm module has been added.• 
Evals in included files no longer fail when stepping into the included file.• 
"Here" doc styling is now supported.• 
When debugging Perl, the Komodo debugger does not step over "require" statements.• 

PHP Editing and Debugging

Komodo now fails gracefully if the php.ini file does not exist in the specified location.• 
Autocompletion is now available inside strings.• 
The icon on the Komodo start page now correctly shows when PHP has been enabled.• 
Autocompletion no longer fails inside certain string elements.• 
Syntax checking now functions on large PHP files.• 
PHP configuration is correctly reloaded if it is changed.• 
Autocompletion now picks up changes in the php.ini file.• 
The PHP 4.1 / 4.2 debugger extension is included with the Komodo distribution. Note that the
4.1 debugger extension functions with PHP version 4.2.

• 

Tcl Editing and Debugging

Breakpoints can now be set in included files.• 
For Tcl Dev Kit users, Prowrap was being incorrectly called, rather than Procheck.• 

Other

PDK version 4.0 is now supported.• 
The Rx Toolkit has better font styling.• 
To speed initial startup, sample Web services are no longer added to the Komodo Preferences.• 

Web Services

When parsing WSDLs, there is now schema support for complex types (however, not all schema
is supported).

• 

The WSDL parser now parses all XMethods.com WSDL files.• 

Komodo 1.2.7 RC1 for Windows and Linux: March, 2002

Komodo 1.2 for Windows and Linux: December, 2001

Web Service Consumption

Komodo provides Web service support, bookmarks; quickly add Web services to Perl, Python or PHP
files (including automatic language support like CallTips and AutoCompletion for Web service objects);
browse your Web service bookmark library in the Komodo User Guide.

Share Recipes with the ASPN Cookbook

Release Notes 412/437



Komodo provides a fast, easy way to share recipes. Submit your favorite Perl regular expression or
Python, Tcl or XSLT code snippet to the ASPN Cookbook.

Enhanced Editing

The Komodo editor detects files that have changed on disk, and gives you the option to reload. Komodo
also remembers the "state" of each file in the Most Recently Used list, including cursor position,
bookmarks, fold points, language association, and whitespace preference. Undo changes to a file using
the Revert File function. Quickly select blocks of code when performing editing functions; configure text
to auto−wrap in the editor and to auto−save at the interval you prefer.

Keyboard Shortcuts

New keyboard shortcuts include Ctrl+Insert (copy), Shift+Delete (cut), Shift+Insert (paste) and
Ctrl+<debug command> (suppress Debug Options dialog). Note that you can also use the Ctrl key in
conjunction with the Debugging Toolbar buttons to suppress display of the Debugging Options dialog.

Find and Replace

Search and / or Replace a word or phrase in all documents open in the Komodo editor. Use the new tab
on the Output Pane to view all results from Find or Replace operations.

Templates and Macros

Code faster with language−specific templates. Create custom templates, and embed variables for date
and time stamps.

Perl Dev Kit Support

Use Komodo in conjunction with the Perl Dev Kit to build Windows executables, services and controls
written in Perl.

Tcl Support

With a membership to ASPN Tcl, use Komodo's syntax checking and debugging with Tcl.

FTP Support

Edit remote files on FTP servers; add remote files to projects; save files to remote FTP servers. Use
Komodo's Preferences to configure connection information for servers you use frequently.

Komodo User Guide

Search the User Guide or find a word or phrase in the current page; navigate using the Table of Contents;
change the font size. Take a visual tour of the Komodo Workspace, the Komodo Debugger, the Komodo
Editor or the Rx Toolkit.

Release Notes 413/437



Komodo Tutorials

Learn about new languages and language−specific Komodo features in the Tutorials.

PHP

Now supports AutoCompletion.

Fonts and Colors

Customize the display of fonts and colors for elements of every language supported by Komodo.

CGI Debugging Emulation

Emulate a CGI environment while debugging on your local machine by configuring server environment
variables and form input.

Enhanced Debugging

Expanded Debugging Options remember your debug settings from one session to another; view HTML
output on the Output tab; configure the Remote Debugging Listener Port; enter program input on the
Output tab.

Run Commands

Interact with the command line using the Run Commands function.

Internationalization

Set the default encoding for files in Komodo's Preferences. While Komodo does not yet support editing
outside of the English character set, non−English characters in existing files will be preserved.

Komodo 1.2 beta 1 for Linux: November 2001

Komodo 1.2 beta 2 for Windows: November, 2001

Komodo 1.2 beta 1 for Windows: October, 2001

Komodo 1.1: June, 2001

PHP Debugging Enjoy PHP syntax checking and debugging with Komodo. You can configure Komodo
to debug PHP files locally or within a Web server environment. For more information, see Debugging
Programs in the Online Help.

XSLT Debugging − This release supports XSLT debugging. You can view your XSLT file, your XML
input file, and your output simultaneously. You can even open an XML file on your Web server and

Release Notes 414/437



transform the file while you debug your XSLT program. We've also improved the sample XSLT file in
our Sample Project. For more information on XSLT debugging, see Debugging Programs in the Online
Help.

Tcl support − You can now use Komodo to edit your Tcl files, including syntax coloring, code folding,
autocomplete and calltips. We added a Tcl file to our Sample Project. If you have Tcl Dev Kit, you can
enjoy Tcl syntax checking within Komodo. We plan to include stand−alone syntax checking that does
not require Tcl Dev Kit in an upcoming release. Komodo does not yet support Tcl debugging.

Improved Performance − This release is based on the latest Mozilla tree, which includes an optimized
code base. Performance improvements include faster installation and startup and faster response while
you type or change files. Komodo responds much faster during debugging, when opening files and
switching between files, and when loading the File Associations pane in the Preferences dialog.

Support for more languages − You can now use Komodo to edit Ruby and other languages, such as VB
and SQL.

Improvements for Komodo on Linux − You can now resize the Komodo workspace, you can use
fixed−width fonts, and you can debug Perl scripts if you have Perl 5.6 installed and configured.

XML Autocomplete − Komodo now features autocomplete for your XML files. When you type an open
angle−bracket "<", Komodo lists the elements in your file. Komodo XML autocomplete also lists tag
attributes and suggests attribute values for certain values. XML Autocomplete also helps you close your
tags.

Expanded Find and Replace dialog − You can now use regular expressions in your find and replace
strings, you can search through folded text, and more.

Partial Unicode support − Komodo supports ASCII, Latin−1 and Unicode (UTF−8, UCS−2 or UCS−4)
encoding. If you use Komodo to edit a file that has a different character encoding than those mentioned
above, non−English characters may be removed when you save the file.

Komodo 1.0: April, 2001

Komodo .1: November, 2000

Known Issues

To view the status of outstanding Komodo issues, including those that have been fixed in this release, or
to add comments or additional issues, please visit the Komodo Bug Database.

Release Notes 415/437

http://bugs.ActiveState.com/Komodo


Installation Issues

Windows NT users may need to manually move their license file from
\WINNT\Profiles\[username]\ActiveState to
\WINNT\Profiles\[username]\Application Data\ActiveState.

• 

If you upgraded your system from Win9x/WinME to WinNT/2K, ensure that yourComSpec
environment variable is configured to%SystemRoot%\system32\cmd.exe (for example,
C:\system32\cmd.exe). There was a bug in the Microsoft Windows installer that did not
update the variable from its original value ofcommand.com.

• 

The Komodo installer requires up to 230 MB in your TMP directory (as indicated by the value of
your 'TMP' environment variable) during installation, even if you plan to install Komodo to
another drive. If you do not have the required space on this drive, manually set the 'TMP'
environment variable to another directory with sufficient space. Ensure that you have enough
space, temporarily, for installation.

• 

If you try to install Komodo on Windows and the MSI install fails with error 2355, your MSI file
is corrupt. Please download Komodo again and re−run the MSI install.

• 

There are known issues regarding the installation of PHP on Windows Millennium systems;
please refer to the PHP site for installation information.

• 

Startup Issues

The first time Komodo is run after installation, it must register a number of components with the
operating system. This causes the first launch to be considerably slower than subsequent
launches.

• 

Certain programs may cause problems launching Komodo. For example, server programs such as
SQL Server are known to be problematic. Also, Norton Anti−Virus (NAV), or more specifically,
the File System Realtime Protection feature is problematic. If Komodo fails to load, examine the
applications you are running, and try stopping those that might be conflicting with Komodo.

• 

Editing Issues

• The macro recorder will record events that it cannot handle, such as the opening of dialogs. The
only dialog that can be opened via a macro is the Find dialog; other dialogs will cause the macro
to stop.

• 

Application Data redirection on Windows: When you install Komodo, if you redirect the files
that Komodo expects to have permissions to install in your Application Data folder, Komodo and
Mozilla can close unexpectedly.

• 

Languages that are read right−to−left and Asian languages are not supported. All Latin and
Cyrillic languages are fully supported.

• 

Cheyenne Antivirus Realtime Monitor and Komodo on Windows 9x − When RealMon is set to
monitor outgoing files (or both incoming and outgoing files) Komodo's syntax checking doesn't
function.

• 

Release Notes 416/437

http://www.php.net


On slow networks, users may notice performance degradation when editing files on network
machines. Performance can be improved by disabling the Komodo function that checks if files
on disk have changed. Use the Editor Preferences to disable this feature.

• 

Interpolation shortcuts in snippets are not executed when the snippet is inserted in the Editor
Pane via dragging and dropping.

• 

Debugging Issues

If the debug listener (Debug|Listen for Remote Debugger) is off, multithreaded applications may
not run or debug as expected. Only the main thread operates through the debugger. To debug
multithreaded applications, turn on debug listening prior to debugging. (Debug listening is turned
on by default.)

• 

PHP configurations that use Zend Extensions (such as PHP Accelerator) are not compatible with
the Komodo PHP debugger.

• 

Due to the way the core Perl interpreter works, it is not possible to step over "require"
statements.

• 

You cannot use the 'freestanding' option when debugging Perl applications created with the PDK
in Komodo. Instead, build a 'dependant' executable, which requires a local install of ActivePerl.

• 

The "Delete temp files after each run" option generates an error when debugging an application
with the Perl Dev Kit interface.

• 

The variable watcher does not work when debugging
\\machine\d$\path\to\perl_script.pl. It does work when opening the same file
via a UNC path that does not include a '$' character.

• 

You cannot debug in a separate console on Windows Me/9x machines.• 
If a script has syntax errors, the debugger can fail without warning.• 
When debugging remote applications, Komodo fails if the remote process does not have valid
stdout and stderr handles. GUI applications, such as those started with "wperl.exe" or
"pythonw.exe", or those using the Pythonwin or wxPython frameworks, or those with certain
embedded applications, can have invalid stdout and stderr handles. Until we resolve this issue,
try to run and debug your remote program under perl.exe or python.exe.

• 

Python, XSLT and PHP debugging require TCP/IP to be installed and properly configured, even
if you are debugging scripts locally. While TCP/IP is configured by default on most systems,
early versions of Windows may require manual TCP/IP configuration.

• 

When debugging a GUI script in Komodo, adding a "watched variable" when not stopped at a
breakpoint can cause Komodo to hang. You must manually terminate the script being debugged
to stop Komodo from hanging. The problem occurs because the GUI script, while in its message
loop, does not respond to Komodo's request for the variable value.

• 

Local debugging with the PHP debugger will fail if the debugger proxy is used.• 
If the Komodo debugger is configured to use a specific port, when Komodo is shut down, the
port is sometimes not immediately released. If Komodo is restarted before the port is released by
the operating system, a message is displayed advising that the system is unable to bind that port.
As a workaround, we suggest configuring port 0 as the Komodo debugging port and using the
debugger proxy for remote debugging.

• 

Release Notes 417/437



Other Issues

Komodo inherits a Mozilla bug whereby certain video drivers on Windows cause Komodo to
crash. If you experience this behavior, upgrade your video driver to the latest version. If the
problem persists, reduce the color definition assigned to the driver (Control
Panel|Display|Settings).

• 

On Windows XP, the Windows task bar may show the old Komodo icon from a previous
installation of Komodo. To fix this issue, delete the icon cache, located by default in
C:\Documents and Settings\<username>\Local Settings\Application Data\IconCache.db.

• 

Komodo inherits a Mozilla bug regarding display on dual−monitor systems where the secondary
monitor is to the left of the primary monitor (causing negative coordinate results). The Komodo
display occasionally fails to refresh; Komodo must be stopped and restarted to fix the display.

• 

When using Komodo's Preview in Browser feature, users running Mozilla on Windows XP Pro,
Windows 2000 Pro and Windows 98 may find that they cannot exit Komodo if Mozilla is still
open. If this should occur, close all open browser windows before exiting Komodo.

• 

The Palm Desktop for Windows software makes exclusive use of the Ctrl − Shift − T key
combination, thus making this combination unavailable in Komodo.

• 

When adding a GUI Builder project file (.ui) to a Komodo project file (.kpf), the files associated
with the dialog are not included when the .ui file is added to a project. You must edit the dialog
and save it before the files will be included under the dialog in the project.

• 

In the GUI Builder, the −image option for labels and buttons does not work.• 
In the GUI Builder, there is no documentation for theuserinit and run functions.• 
A bug in CVS will cause WinCVS and TortoiseCVS to detect file changes when a Komodo
project has merely been opened. The problem is likely a bug in the cvshome.org executable or in
the cvsnt.org executable, which are used by both WinCVS and TortoiseCVS.

• 

When using the PDK 'Build standalone application' feature in Komodo with Perl 5.8.0 on a
Linux installation where the environment is set to use UTF−8, you must add a module 'utf8' on
the modules tab. This is the equivalent of 'perlapp −−add utf8'. This does not affect Perl 5.6.x or
future versions of Perl 5.8.1 or higher.

• 

Komodo's integration with the Perforce commit/submit command cannot commit files that are
not in the default changelist. These files must be submitted via an external interface (e.g. p4,
P4Win). Note that any files checked out inside Komodo will be in the default changelist, so this
limitation should only apply to users who already use an external interface to their Perforce
repository.

• 

On Windows NT, some interactive commands may not work properly when run from the
Command Output tab of the Output Pane. You must run these commands in a separate shell.

• 

Running interactive commands (especially "command.com") on Win98/ME through Komodo's
"Run Command" feature can cause Komodo to hang. It is recommended that Win98/ME
Komodo users run only simple commands using the Run Command feature.

• 

In file picker dialogs that display a list of files, when "All files" is specified, files that begin with
a period are not displayed.

• 

Perforce client version 2001.1 and previous for Windows is known to hang when used for
Komodo's Perforce integration. Upgrading to the most recent version of Perforce is known to fix
the problem.

• 

Release Notes 418/437

http://bugzilla.mozilla.org/show_bug.cgi?id=230512


If the Perforce connection cannot be established, checking the status of files in a Perforce
repository will hang Komodo.

• 

The Output tab cuts off lines at 250 characters.• 
Macros will not record certain commands, including (but possibly not limited to)
Ctrl+Shift+b|r|e|d (toggle toolbars or button text), Ctrl+Shift+n (new default file), and View as
Language menu items.

• 

If you are using CVS Source Code Control, note that the very first time you log in to a
repository, cvs.exe fails to create the .cvspass file correctly and will return an error. Repeat the
command to login a second time and correctly generate the file. This is a CVS bug.

• 

If you are using CVS Source Code Control on Windows 98 or Me, the environment variables
HOMEDRIVE andHOMEPATH must be configured on your system. Typically,HOMEDRIVE is set
to "c:", andHOMEPATH is set to "\".

• 

If you are using the Pop−Up Stopper ad−blocking program, it will close the Rx Toolkit window
immediately after it is opened.

• 

When you schedule a new file to be added using CVS, CVS will not permit you to remove the
file from the repository using the "revert changes" command.

• 

Users of the Japanese version of Windows XP may experience difficulties in starting Komodo.• 
The Open field in the Open/Find Toolbar does not automatically display a drop−down list of
directories when an UNC path is typed. Currently, the list is only displayed when a the path
includes a subdirectory.

• 

Komodo cannot currently handle directory names and filenames that include the "%" (percent)
character.

• 

Linux / Solaris Issues

Unless specified otherwise, these issues apply to both Linux and Solaris.

On Solaris, GNU tar must be used to unpack the Komodo installation file. If you use the native
Solaris tar version, you will get a checksum error when attempting to unpack the Komodo tar
package, and any attempt to run the install script will fail.

• 

Installing Komodo on an NFS filesystem on Linux is not currently supported. As a workaround,
you can set the KOMODO_USERDATADIR environment variable to a non−NFS directory in
which your Komodo preferences and startup files are created and stored.

• 

Support for sub−pixel rendering ("antialiasing"), while available in GTK+ 2.0, is not supported
in Komodo due to the performance impact.

• 

On Solaris, interactions between Komodo and Sun's CDE Window Manager may cause a modal
child window (such as the Preferences page, or the Open | File dialog) to get hidden behind
Komodo's main window. The main Komodo window will be hung waiting for the (now
unreachable) modal window to be closed. The problem is likely related to a specific CDE
configuration "focus follows mouse" or similar.

• 

The Fonts and Colors page in the Preferences displays the same list of fonts in both the Fixed
and Proportional lists. There is no programmatic way to identify whether a font is proportional or
not on GTK; therefore, users must know the properties of the individual fonts when modifying
these values.

• 

Release Notes 419/437



Install Komodo into a directory path that only includes alphanumeric characters. Komodo is
known to have trouble with paths that include spaces and some non−alphanumeric characters.

• 

Filenames or paths containing non−ASCII characters cannot be opened remotely.• 
Key bindings defined in the window manager (such as KDE) take precedence over Komodo key
bindings. In the case of conflicts, you must either change the Komodo key bindings or the
window manager key bindings.

• 

You cannot relocate an existing Komodo installation to a new directory. You must uninstall
Komodo from the existing location and reinstall it in the new location.

• 

When using the PHP Configuration Wizard, you must have write access to any directories you
specify in the wizard.

• 

Red Hat Linux 9.0 is known to have threading library bugs in its glibc that may cause Komodo
to hang in certain situations. The recommended solution is to upgrade to the latest glibc for Red
Hat Linux 9.0.

• 

Release Notes 420/437



Komodo FAQ
Komodo doesn't start• 
I can't see my Left or Right Pane• 
I can't see my Bottom Pane• 
I want to maximize my Editor Pane• 
How do I know if I'm debugging?• 
How do I know if I'm editing?• 
How can I add command−line arguments to my program for debugging?• 
Komodo crashes. What can I do?• 
Why is Komodo so big?• 
I already have Mozilla. Why do I need to have two versions?• 
I'm having trouble debugging PHP. What do I do?• 
How do I emulate sessions in PHP debugging?• 
How do I configure Virtual Hosting on an Apache Web server?• 
I moved my Komodo installation on Linux, and am now getting Perl debugging errors.• 
How do I prevent the dialog from displaying every time I start the debugger?• 
Why do I get a CGI security alert when debugging PHP?• 
I'm using Windows 98. When I start Komodo, I get the error "Page fault in MSVCRT.DLL".• 
The Check Configuration window reports that a language installed on my system is not
available. Why?

• 

My screen goes black for a second or two whenever I open files for which Komodo performs
background syntax checking. Why?

• 

Why does VPM display a "Failure to Connect To Web Server" message?• 
Why can't I find the module that I want using the Visual Package Manager (VPM)?• 
How can I run additonal CVS commands from within Komodo?• 

Komodo doesn't start

If Komodo doesn't start, there could be one of several issues.

Do you have a license installed?• 

Komodo needs a license to become functional. If you have a Beta release, we include a trial license with
the package. If you have a final release (non−Beta), you can download a license from ActiveState.

Does your username have non−ASCII characters?• 

Komodo keeps your user preferences in an Application Data directory on Windows machines. For
example, <installdir>\Documents and Settings\<username>\Application Data\ActiveState\Komodo.

In Komodo 1.0 and earlier, Komodo did not understand non−ASCII characters in your username, so
when Komodo looked for your preferences file during startup, Komodo got confused. This issue was
fixed in Komodo 1.1 Beta 1.

Komodo FAQ 421/437

http://www.ActiveState.com/Products/Komodo/license_get.plex


Do you have Norton Anti−Virus (NAV) installed, or more specifically, the File System Realtime
Protection feature enabled?

• 

The problematic relationship between Komodo and Norton Anti−Virus' File System Realtime Protection
feature is a known issue, which we are working to remedy. In the meantime, you can disableNAV Corp
7.5 FSRP before running Komodo, and then re−enable it after Komodo starts.

I can't see my Left or Right Pane

One or more panes may be hidden.

To view the Left Pane, click the Show/Hide Left Pane button on the toolbar, use the options on the View
menu, or use the associated key binding.

I can't see my Bottom Pane

The Bottom Pane appears below the Editor Pane during debugging. If you can't see your Bottom Pane, it
may be hidden.

To view the Bottom Pane, click the Show/Hide Bottom Pane button on the toolbar, use the options on
the View menu, or use the associated key binding.

For more information, see Debugging Programs

I want to maximize the Editor Pane

I like to see the Left and Right Panes and the Bottom Pane, but right now I want to maximize my Editor
Pane to get some coding done. How can I maximize my Editor Pane?

To maximize your Editor Pane, hide the other panes in the Komodo workspace:

Click the close arrow button that appears in the top right corner of each of these panes.1. 

How do I know if I'm debugging?

When Komodo is debugging, the title of the Komodo workspace includes an indication of the state of the
debugger. If the debugger is running, the title looks similar to [pathname\filename] − ActiveState

Komodo FAQ 422/437



Komodo − Debugger is running. If the debugger has hit a breakpoint, the title looks similar to
[pathname\filename] − ActiveState Komodo − Debugger is in Break Mode.

How do I know if I'm editing?

You are editing any time you're not formally debugging. When Komodo is editing, the title of the
Komodo workspace is [pathname\filename] − ActiveState Komodo.

How can I add command−line arguments to my program
for debugging?

If you want to send add command−line arguments to your program for debugging, you can add these
using the Debugger Launch Options dialog:

Go to the Debug menu and select Start or press F5.1. 
In the Debugger Launch Options dialog, select the directory you want to begin debugging your
program in. Click Browse and navigate to the appropriate directory.

2. 

In the same Debugger Launch Options dialog, enter your command−line arguments. These are
sent to the script and not to the interpreter. Separate the arguments with spaces.

3. 

Click OK.4. 

Komodo crashes. What can I do?

If Komodo crashes, please create the following error log files, find the files, verify their contents and
send them to us so we can determine what happened:

stderr.tmp• 
stdout.tmp• 

Step 1: Creating the error log files

To create the error logs on Windows:

Go to the Start menu and select Run.1. 
Entercmd2. 
In the command box, change to the Komodo directory. The default isC:\Program
Files\Komodo−x.x, where "x.x" is the Komodo version.

3. 

In the Komodo directory, enterKomodo −v and press Enter.4. 

Komodo FAQ 423/437



This starts Komodo.
Perform the task that caused the original Komodo error.5. 
Close Komodo, or let it crash.6. 

This creates the error log files and puts them in a directory as indicated in the table in Step 2: Locating
the error log files.

Note − If Komodo "cancelled" itself, open the Task Manager and close the Mozilla process.

To create the error logs on Linux:

In the command box, change to the Komodo directory. The default is~/.komodo.1. 
In the Komodo directory, enterKomodo −v and press Enter.
This starts Komodo.

2. 

Perform the task that Komodo didn't like.3. 
Close Komodo, or let it crash.4. 

This creates the error log files and puts them in your ~/.komodo directory, as indicated in the table in
Step 2: Locating the error log files.

Note − If Komodo cancelled itself, close the Mozilla process.

To close the Mozilla process on Linux:

Runps ux to identify the Mozilla process id.1. 
Runkill <process id> to close that process.2. 

Step 2: Locating the error log files

Komodo stores the error log files in a directory beneath theApplication Data directory. The
location of this directory varies according to the version of Windows, and whether or not User Profiles
are enabled on your system. Use the following table as a guide for the file location. In the examples
below, "x.x" refers to the version of Komodo that you are using.

System Location or, if User Profiles is enabled,

Windows
XP

C:\Windows\Application
Data\ActiveState\Komodo\x.x

C:\Documents and
Settings\<username>\Application
Data\ActiveState\Komodo\x.x

Windows
2000

C:\Windows\Application
Data\ActiveState\Komodo\x.x

C:\Documents and
Settings\<username>\Application
Data\ActiveState\Komodo\x.x

Windows
NT

C:\Windows\Application
Data\ActiveState\Komodo\x.x

C:\WINNT\Profiles\<username>\Application
Data\ActiveState\Komodo\x.x

Komodo FAQ 424/437



Windows
Me

C:\Windows\Application
Data\ActiveState\Komodo\x.x

C:\Windows\Profiles\<username>\Application
Data\ActiveState\Komodo\x.x

Windows
98

C:\Windows\Application
Data\ActiveState\Komodo\x.x

C:\Windows\Profiles\<username>\Application
Data\ActiveState\Komodo\x.x

Windows
95

C:\WINDOWS\Application
Data\ActiveState\Komodo\x.x

C:\WINDOWS\Profiles\<username>\Application
Data\ActiveState\Komodo\x.x

Linux ~/.komodo n/a

Step 3: Verifying and sending the files to ActiveState

To send the error log files to ActiveState:

Locate the files.1. 
Verify that the files are not blank by viewing them with a text editor.2. 
Create a bug describing what happened just before the crash in the ActiveState bug database. (If
you do not already have an ASPN or ActiveState bug database account, you can open one by
selecting "join".)

3. 

Once the bug has been created, add the error log files by selecting Create in the Attachments
and Dependencies section of the bug report.

4. 

Why is Komodo so big?

Because Komodo is built on the Mozilla framework, it is necessary for us to include the Mozilla build
that exactly matches the development version of Komodo. For that reason, even if you have Mozilla on
your system, Komodo installs the Mozilla version that it requires.

Another sizeable component of Komodo is language support. Komodo is so tightly integrated with Perl,
Python and PHP that it is necessary to include components of those languages, at specific version levels,
for debugger and editor support.

I already have Mozilla. Why do I need to have two
versions?

When ActiveState develops a Komodo release, the work is based upon a specific version of Mozilla.
During the development process, we upgrade the level of Mozilla used by Komodo, but this process
requires considerable testing to ensure that no functionality is lost. Additionally, we add some custom
components to the Mozilla tree that are used by Komodo. For these reasons, we recommend that you do
not replace the Mozilla version included with Komodo with a later Mozilla version.

Komodo FAQ 425/437

http://bugs.activestate.com/query.cgi?set_product=Komodo
http://bugs.activestate.com/join.cgi


I'm having trouble debugging PHP. What do I do?

If you receive an error message when attempting to debug a PHP program or if the debugging process
does not proceed as expected, verify that you have installed PHP and the Xdebug extension as per the
instructions in the Debugging PHP documentation, then check the following:

Confirm PHP Configuration

xdebug: in the command or shell window, enterphp −m. "xdebug" should be listed as both a
regular module and a zend extension. If this is not the case, your configuration is incorrect. See
"Common PHP Configuration Problems" below.

1. 

Syntax Checking: in Komodo, select Edit|Preferences. Click on Smart Editing, and ensure that
"Enable background syntax checking" is checked. Open a PHP file and enter something that is
syntactically incorrect, such as:

    <?
    asdf
    echo test;
    ?>

Komodo should display a red squiggly line underecho test;. If it does not, it indicates that
Komodo is not able to communicate with the PHP interpreter.

2. 

Debug: if steps one and two were successful, ensure that the debugger is functioning by opening
a PHP program and debugging it. Ensure that the correct Preferences are configured for PHP.

3. 

If any of the steps above were unsuccessful, proceed to the next section.

Common PHP Configuration Problems

Multiple PHP executables on one machine: in Komodo's Preferences, explicitly specify the
PHP interpreter configured in your php.ini file. The location of the php.ini file can also be
explicitly set.

• 

Verify the PHP version: PHP 4.0.5 or greater is required for PHP syntax checking. PHP 4.3.1 or
greater is required to debug PHP programs.

• 

Verify Xdebug library specification: The location of xdebug.dll (Windows) or xdebug.so (Linux
and Solaris) must be defined the php.ini file, for example:

Windows: zend_extension_ts=C:\php−4.3.7\extensions\php_xdebug.dll♦ 
Linux: zend_extension=/php−4.3.7/extensions/php_xdebug.dll♦ 

• 

Ensure that the Xdebug extension is configured correctly in the php.ini file as per the Remote
PHP Debugging instructions.

• 

Komodo FAQ 426/437



Windows−Specific Configuration Issues

Windows 2000 upgrade: if you upgraded to Windows 2000 from an earlier version of Windows,
check the value of the "COMSPEC" variable in the "System variables" (as described above). It
should point toC:\WINNT\system32\cmd.exe, and not command.com. If you must
change the variable, reboot your system.

• 

There are known issues regarding the installation of PHP on Windows Millennium systems;
please refer to the PHP site for installation information.

• 

Version Error Messages

If you receive a dialog with the following text:

    Warning
    xdebug: Unable to initialize module
    Module compiled with debug=0, thread−safety=1 module API=20001222
    PHP compiled with debug=0, thread−safety=1 module API=20001222
    These options need to match

... download an updated version ofxdebug.dll (Windows) or xdebug.so (Linux) from the
Xdebug.org site.

How do I emulate sessions in PHP debugging?

Though it is possible to emulate sessions in local debugging mode, this requires pre−knowledge of
session keys, and how those session keys are communicated to PHP.

It is easier to debug sessions using remote debugging. Run the script under a web server and start the
debugging session from a web browser. Komodo intercepts the session and debugs it. All session data is
available and modifiable through the Variable tabs.

How do I configure Virtual Hosting on an Apache Web
server?

Virtual Hosting is an Apache feature for maintaining multiple servers on the same machine,
differentiating them by their apparent hostname. For example, a single machine could contain two
servers, "www.yourdomain.com" and "debug.yourdomain.com".

If you have configured your Apache installation to use Virtual Hosting (see
httpd.apache.org/docs/vhosts/), you can add directives to your VirtualHost sections to specify how
Komodo's PHP debugger extension operates for those hosts. Use the "php_admin_value" to set specific

Komodo FAQ 427/437

http://www.php.net
http://www.xdebug.org
http://httpd.apache.org/docs/vhosts/


debugger settings for that virtual host. Here is an example:

    NameVirtualHost *
    <VirtualHost *>
    php_admin_value xdebug.enabled 0
    DocumentRoot "/Apache/htdocs/"
    ErrorLog logs/www.error.log
    Servername www.yourdomain.com
    </VirtualHost>

    <VirtualHost *>
    php_admin_value xdebug.enabled 1
    DocumentRoot "/Apache/htdocs/"
    ErrorLog logs/debug.error.log
    Servername debug.yourdomain.com
    </VirtualHost>

This will enable debugging under debug.yourdomain.com, but not under www.yourdomain.com. You
can additionally configure the Virtual Host to use a specific machine for remote debugging:

    <VirtualHost *>
    php_admin_value xdebug.enabled 1
    php_admin_value xdebug.host komodo.yourdomain.com
    DocumentRoot "/Apache/htdocs/"
    ErrorLog logs/debug.error.log
    Servername debug.yourdomain.com
    </VirtualHost>

For more information on configuring Virtual Hosting under Apache, see the Apache documentation at
httpd.apache.org/docs/.

I moved my Komodo installation on Linux, and am now
getting Perl debugging errors.

On Linux, you cannot relocate an existing Komodo installation to a new directory. You must uninstall
Komodo from the existing location and reinstall it in the new location. See Uninstalling Komodo on
Linux for instructions.

How do I prevent the dialog from displaying every time I
start the debugger?

Komodo FAQ 428/437

http://httpd.apache.org/docs/


To prevent the debugger dialog from appearing each time you start the debugger, hold down the 'Ctrl'
key when you start the debugger. (For example, press 'Ctrl'+'F5' rather than 'F5' to start debugging.)

Why do I get a CGI security alert when debugging PHP?

The CGI security alert only occurs when you compile PHP with −−enable−cgi−force−redirect. That
compilation directive forces PHP to check if it is being run as a CGI by looking at environment variables
commonly available only under a CGI environment. If they exist, it looks for another environment
variable that is reliably available ONLY under Apache, REDIRECT_STATUS (or
HTTP_REDIRECT_STATUS under Netscape/iPlanet). If that environment variable does not exist, the
security alert is generated.

To run your compilation of PHP under Komodo with CGI emulation, you have to add a CGI
environment variable called REDIRECT_STATUS with any value.

I'm using Windows 98. When I start Komodo, I get the
error "Page fault in MSVCRT.DLL".

If your system generates the above error when starting Komodo, you should install the latest "critical"
fixes for Windows 98. Use the Windows Update utility to download and install the upgrade packages, or
refer to the Microsoft Support Web site.

When I click Check Configuration on the Start Page,
Komodo reports that a language that is installed on my
system is not available. Why?

In order for Komodo to detect the presence of a language installed on your system, the location of the
language interpreter must be specified in your system'sPATH environment variable. If the Komodo Start
Page states that a language is "Not Functional", or if the Komodo Preferences say that the language
interpreter is not found on your system, check that the interpreter is specified in yourPATH.

My screen goes black for a second or two whenever I
open files for which Komodo performs background
syntax checking. Why?

Komodo FAQ 429/437

http://support.microsoft.com


Komodo launches a process as part of the background syntax checking that can cause a full screen
command prompt to momentarily appear on some Windows systems. You can make the process invisible
by editing the properties for the command prompt window. On the Windows Start menu, right−click the
Command Prompt item, and select Properties. Select the Options tab, and change the Display options to
Window.

Why does VPM display a "Failure to Connect To Web
Server" message?

The Visual Package Manager (VPM) runs as a local HTTP server on a system−assigned port.

If you are running firewall software that blocks connectivity to localhost, your browser may not be able
to connect to the VPM server. Since the port used by VPM is assigned by the system and changes each
time VPM is run, you cannot set a specific port number in your access rules. If possible, configure the
firewall to allow TCP connections fromlocalhost and 127.0.0.1 on any port. Consult the firewall
documentation for information on changing access rules.

If your browser is configured to use a proxy, ensure that the proxy is bypassed for local addresses (e.g.
"Bypass Proxy Server for local addresses" in Internet Options on Windows), or thatlocalhost and
127.0.0.1 are listed in the proxy exception list.

Why can't I find the module that I want using the Visual
Package Manager (VPM)?

Modules stored in Perl Package Manager (PPM) repositories are built by ActiveState for use with the
Visual Package Manager (VPM). Not all Perl packages have PPM and VPM equivalents for every
platform and Perl version. To check the build status of a package, see ActiveState's ASPN website.

If a Perl module is not available from the PPM repository, it can be manually installed and built, for
example from the CPAN module repository. For instructions on using modules from CPAN, see the
ActivePerl documentation.

How can I run additonal CVS commands from within
Komodo?

Komodo can be used to check out, add, remove, compare, submit and revert files in a CVS repository.
CVS offers additional commands such as import, checkout, history, annotate, rdiff and watch which can

Komodo FAQ 430/437

http://ppm.activestate.com
http://www.CPAN.org
http://aspn.activestate.com/ASPN/docs/ActivePerl/lib/CPAN.html


be put into Run Commands and saved to a project or the Toolbox. For example, the followingcvs
import command prompts for the User, Host, Module, Project and Version to import:

cvs −d :ext:%(ask:User)@%(ask:Host):%(ask:Path) import %(ask:Module:)
%(ask:Project:) %(ask:Version:)

Alternatively, the%(ask:...) interpolation shortcut could be populated with defaults or replaced with
static values:

cvs −d :ext:%(ask:User:jdoe)@myhost:/var/cvsroot import %(ask:Module:)
%(ask:Project:MyProject)

CVS reqires a real terminal for adding change descriptions. Be sure to set Run in: New Console in the
command's properties.

Komodo FAQ 431/437



License and Copyrights
Copyright ©2004 ActiveState Corporation. ActiveState Corp. is a division of Sophos Plc. All Rights
Reserved.

ActiveState is a registered trademark of ActiveState Corp. Komodo, the Perl Dev Kit, the Tcl Dev Kit,
ActivePerl, ActivePython, ActiveTcl and ASPN are trademarks of ActiveState Corporation.

All other products mentioned are trademarks or registered trademarks of their respective companies.

The table of contents in the Komodo documentation is based on an open−source project written by by
Dieter Bungers, GMD, German National Research Center for Information Technology, Department for
Innovative Consulting and Development (IBE). See
http://www.d.umn.edu/ece/publications/handbook/Generate/OrigDoc.htm for more information.

ActiveState Komodo licenses are issued on a per−user basis. A Komodo license may be installed on
more than one system or platform, as long as the licensee is the sole user of the software.

Komodo License

ACTIVESTATE KOMODO LICENSE AGREEMENT

Please read carefully: THIS IS A LICENSE AND NOT AN AGREEMENT FOR SALE. By
using and installing ActiveState Corporation's Software or, where
applicable, choosing the "I ACCEPT..." option at the end of the License you
indicate that you have read, understood, and accepted the terms and
conditions of the License. IF YOU DO NOT AGREE WITH THE TERMS AND
CONDITIONS, YOU SHOULD NOT ATTEMPT TO INSTALL THE SOFTWARE. If the Software
is already downloaded or installed, you should promptly cease using the
Software in any manner and destroy all copies of the Software in your
possession. You, the user, assume all responsibility for the selection of
the Software to achieve your intended results and for the installation, use
and results obtained from the Software. If you have any questions concerning
this, you may contact ActiveState via email at Sales@ActiveState.com.

This ActiveState License ("License") is made between ActiveState Corporation
("ActiveState") as licensor, and you, as licensee, as of the date of your
use of the Software (the Software is in use on a computer when it is loaded
into the RAM or installed into the permanent memory (e.g., hard disk or
other storage device) of that computer.).

This License reflects ActiveState's intent to retain full ownership of and
control of the use and distribution of ActiveState Komodo, the License Key
(as hereinafter defined) and other applicable software (collectively the
"Software").

1. License Grant. Subject to the terms and conditions of this License,
ActiveState grants to you a personal, non−exclusive, non−transferable, and
limited license to use the Software solely to create, compile, test and
deploy, in source or object code form, your own application programs
("Works"). You may create redistributable applications based on your unique

License and Copyrights 432/437

http://www.ActiveState.com/
http://www.sophos.com
http://www.d.umn.edu/ece/publications/handbook/Generate/OrigDoc.htm


development work using the Software and you may sublicense to end users of
such Works ("End Users") the personal, non−exclusive, non−transferable right
to install and execute the files, and/or libraries that are necessary to use
the Works created using the Software. Use of such files and/or libraries by
such End Users is limited to runtime purposes only. You may not provide any
End User with access to the development or interactive capabilities of the
Software libraries or technology, nor may you expose the base programming
language(s) as a scripting language within the Works to any such End User.
When you pay the license fee established by ActiveState, you will receive a
license key (the "License Key") from ActiveState that authorizes you to use
the Software only in the following specific contexts:

(i) Commercial Use. If your License Key authorizes Commercial Use, you may
use the software on more than one computer or on a network so long as you
are the sole user of the Software. (A "network" is any combination of two or
more computers that are electronically linked and capable of sharing the use
of a single software program.) You will obtain a separate license for each
additional user of the Software (whether or not such users are connected on
a network). You may make only one copy of the Software for archival or
backup purposes. You are not permitted to sell, lease, distribute, transfer,
sublicense, or otherwise dispose of the Software, in whole or in part, for
any form of actual or potential commercial gain or consideration.

(ii) Evaluation (Trial) Use. If your License Key authorizes Evaluation
(Trial) Use you may use the software only for evaluation purposes without
payment of the License Fee for a period of no more than twenty−one (21) days
from the date of download.

(iii) Non−commercial Use. If your License Key authorizes Non−commercial Use,
you may use the software in a teaching or learning environment only. You are
not permitted to sell, lease, distribute, transfer, sublicense, or otherwise
dispose of the Software, in whole or in part, for any form of actual or
potential commercial gain or consideration.

(iv) Other Use. Any use of the software other than the uses specified above
requires a separate license from ActiveState and the payment of additional
license fees as determined by ActiveState. Such additional redistribution
options are available, at ActiveState's sole discretion, on a case−by−case
basis. Contact Sales@ActiveState to discuss any redistribution options not
covered by this license agreement. ActiveState reserves all rights not
expressly granted to you herein.

2. Termination. This License Agreement is effective until terminated.
ActiveState may terminate this License immediately and without prior notice
if you breach any term of this License or for any other commercially
reasonable ground. In the event of any termination or expiration, you agree
to immediately destroy and/or erase the original and all copies of the
Software, any accompanying documentation and License Keys and to discontinue
their use and you will not retain or store the Software or any copies
thereof, in any form or medium.

3. Proprietary Rights. The Software is licensed, not sold, to you.
ActiveState reserves all rights not expressly granted to you. Ownership of
the Software and its associated proprietary rights, including but not
limited to patent and patent applications, are retained by ActiveState. The
Software is protected by the copyright laws of Canada and the United States
and by international treaties. Therefore, you must comply with such laws and

License and Copyrights 433/437



treaties in your use of the Software. You agree not to remove any of
ActiveState's copyright, trademarks and other proprietary notices from the
Software.

4. Distribution. Except as may be expressly allowed in Section 1, or as
otherwise agreed to in a written agreement signed by both you and
ActiveState, you will not distribute the Software, either in whole or in
part, in any form or medium.

5. Transfer and Use Restrictions. You may not sell, license, sub−license,
lend, lease, rent, share, assign, transmit, telecommunicate, export,
distribute or otherwise transfer the Software to others, except as expressly
permitted in this License Agreement or in another agreement with
ActiveState. In order to use the Software you will be required to obtain a
License Key and agree to this License Agreement for the use of the Software.
You will not disclose or provide access to your License Key to any other
person or entity. You must comply with all applicable Canadian and other
export control laws in your use of the Software. Except as may be expressly
permitted above, you may not modify, reverse engineer, decompile, decrypt,
extract or otherwise disassemble the Software.

6. NO WARRANTY. ACTIVESTATE MAKES NO WARRANTIES WHATSOEVER REGARDING THE
SOFTWARE AND IN PARTICULAR, DOES NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
IN ACCORDANCE WITH THE ACCOMPANYING DOCUMENTATION IN EVERY COMBINATION OF
HARDWARE PLATFORM OR SOFTWARE ENVIRONMENT OR CONFIGURATION, OR BE COMPATIBLE
WITH EVERY COMPUTER SYSTEM. IF THE SOFTWARE IS DEFECTIVE FOR ANY REASON, YOU
WILL ASSUME THE ENTIRE COST OF ALL NECESSARY REPAIRS OR REPLACEMENTS.

7. DISCLAIMER. ACTIVESTATE DOES NOT WARRANT THAT THE SOFTWARE IS FREE FROM
BUGS, DEFECTS, ERRORS OR OMISSIONS. THE SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS AND ACTIVESTATE MAKES NO OTHER WARRANTIES OR CONDITIONS, EXPRESS OR
IMPLIED, WITH RESPECT TO THE SOFTWARE OR ANY ACCOMPANYING ITEMS INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, IN WHICH CASE THE ABOVE EXCLUSIONS MAY NOT
APPLY TO YOU.

8. LIMITATION OF LIABILITY. ACTIVESTATE WILL HAVE NO LIABILITY OR OBLIGATION
FOR ANY DAMAGES OR REMEDIES, INCLUDING, WITHOUT LIMITATION, THE COST OF
SUBSTITUTE GOODS, LOST DATA, LOST PROFITS, LOST REVENUES OR ANY OTHER
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, GENERAL, PUNITIVE OR CONSEQUENTIAL
DAMAGES, ARISING OUT OF THIS LICENSE OR THE USE OR INABILITY TO USE THE
SOFTWARE. IN NO EVENT WILL ACTIVESTATE'S TOTAL AGGREGATE LIABILITY (WHETHER
IN CONTRACT (INCLUDING FUNDAMENTAL BREACH), WARRANTY, TORT (INCLUDING
NEGLIGENCE), PRODUCT LIABILITY, INTELLECTUAL PROPERTY INFRINGEMENT OR OTHER
LEGAL THEORY) WITH REGARD TO THE SOFTWARE AND/OR THIS LICENSE EXCEED THE
LICENSE FEE PAID BY YOU TO ACTIVESTATE. FURTHER, ACTIVESTATE WILL NOT BE
LIABLE FOR ANY DELAY OR FAILURE TO PERFORM ITS OBLIGATIONS UNDER THIS
LICENSE AS A RESULT OF ANY CAUSES OR CONDITIONS BEYOND ACTIVESTATE'S
REASONABLE CONTROL.

9. Intellectual Property Claims. Subject to the limitation of liability set
out in Section 8 above, ActiveState will indemnify and hold you harmless
against any damages finally awarded against you pursuant to a judicial
proceeding, to the extent such proceeding is based upon an infringement of
any valid U.S. or Canadian patent issued as at the date of your acceptance
of this License Agreement, or of any valid U.S. or Canadian copyright, by

License and Copyrights 434/437



the Software provided that you:

(i) give written notice of the claim promptly to ActiveState;

(ii) give ActiveState sole control of the defense and settlement of the
claim;

(iii) provide to ActiveState all available information and assistance; and

(iv) have not compromised or settled such claim.

ActiveState will have no obligation under this Section for any claims which
result through no fault of ActiveState, including: (i) the use of the
Software in combination with any non−ActiveState approved software; or (ii)
modification of the Software by you or anyone other than ActiveState. This
Section sets forth the entire liability of ActiveState and your exclusive
remedies for claims of infringement involving the Software.

10. U.S. Government Restricted Rights Legend. If the Software is acquired by
any agency or other part of the U.S. government in a transaction subject to
the Federal Acquisition Regulations or the Defense Federal Acquisition
Regulations, the Software is furnished with Restricted Rights. Use,
duplication, or disclosure of the Software by the U.S. government is subject
to all applicable restrictions set forth in such Regulations, as amended
from time to time, including subparagraphs (c)(1) and (2) of the Commercial
Computer Software − Restricted Rights clause at Section 48 C.F.R. 52.227−19.

11. Entire Agreement. This License and the Usage License Agreement
constitutes the entire agreement between you and ActiveState regarding the
Software and all accompanying documentation. If any provision is found to be
invalid by a court of competent jurisdiction, the balance of the provisions
will remain in full force and effect. This License will be governed by and
construed in accordance with the laws of the Province of British Columbia,
Canada, excluding its conflict of laws rules. The parties hereby attorn to
the jurisdiction of the courts of the Province of British Columbia in the
event of any dispute hereunder. The provisions of the U.N. Convention on
Contracts For The International Sale of Goods (1980) and any successor
Convention, will not apply to this License.

12. Inurement. The rights, restrictions, limitations, disclaimers and
remedies granted to, retained by, or for the benefit of ActiveState will
inure to the benefit of and will be enforceable by ActiveState and its
licensors, successors and assigns. You may not assign your rights,
obligations and interest in and to this License without the prior written
consent of ActiveState. The obligations, covenants and rights which apply to
you will inure to your benefit and will be binding on you and your permitted
successors and assigns.

BY INSTALLING THE SOFTWARE, OR, WHERE APPLICABLE, CHOOSING THE "I ACCEPT..."
OPTION, YOU INDICATE THAT YOU HAVE READ, UNDERSTOOD AND ACCEPT THE TERMS AND
CONDITIONS OF THE LICENSE. IF YOU DO NOT AGREE WITH THE TERMS AND
CONDITIONS, YOU SHOULD NOT ATTEMPT TO INSTALL THE SOFTWARE.

License and Copyrights 435/437



License and Copyrights 436/437



Sending Feedback
We welcome your feedback, suggestions, feature requests and bug reports.

Comments and Feature Requests

If you tried Komodo and you would like to see a certain feature, or you would like to tell us how
Komodo met or didn't meet your coding needs, send us an email.

Please send suggestions and feature requests to Komodo−feedback@ActiveState.com

Reporting Bugs

If you have found a bug, we'd like to know about it. First, view our on−line bug database and see if your
bug has already been reported. If you can't find your issue, you can submit a bug report.

To view our bug database and submit a bug report:

Go to our on−line bug database at http://bugs.ActiveState.com/Komodo
or 
From the Komodo Workspace, go to the Help menu and select Komodo Bug Database.

1. 

Click View Bugs. You can apply filters and then sort the result by column.2. 
If necessary, click Search and enter a keyword for your bug.3. 
If you can't see your bug, click Submit a bug.4. 
Complete the on−line form with as much detail as possible. This helps us identify the problem.5. 
Click Submit Bug Report.
If you make a mistake, click Reset.

6. 

Your bug will be assigned an ID and you can monitor the progress of your bug on this Web site. We will
email you when your bug is resolved.

Sending Feedback 437/437

http://bugs.ActiveState.com/komodo

	Table of Contents
	Welcome to Komodo
	Starting Komodo
	Windows
	Unix

	The Komodo Workspace
	The Start Page
	Title Bar
	Menus
	Context Menus
	Toolbars
	Left Pane
	Projects Tab
	Code Tab

	Right Pane
	Toolbox Tab
	Shared Toolbox Tab

	Editor Pane
	Bottom Pane
	Managing Tabs and Panes
	Showing and Hiding Tabs
	Showing and Hiding Panes
	Resizing Panes

	Enabling Full Screen Mode

	Getting Started with the Sample Project
	Opening the Sample Project and Files
	Editing a Sample Program
	Debugging a Sample Program


	Working with Projects
	Displaying the Project Manager
	Creating Projects
	Opening Projects
	Setting the Active Project
	Adding Components to Projects
	Project Display Settings
	Saving Projects
	Refreshing Project Status
	Importing and Exporting Projects via Packages
	Importing Files from the File System
	Source Code Control
	Reverting Projects
	Closing Projects
	Deleting Projects
	Project Properties

	Using the Toolbox
	Displaying the Toolbox
	Adding Components to the Toolbox
	Exporting and Importing Toolbox Contents
	Sharing Toolboxes

	Working with Files
	Creating Files
	Creating Files from Templates

	Storing Files within a Project or the Toolbox
	Creating an Open Shortcut to the Current File Location
	Exporting Files as Projects
	Exporting Files to a Package

	Opening Files
	Opening Files with the Open/Find Toolbar
	Opening Remote Files
	Connecting to an FTP Server
	Navigating the Remote File System
	Storing Remote Files in Projects or the Toolbox


	Switching Between Files
	Comparing Files
	Refreshing File Status
	Source Code Control
	File Properties and Settings
	Properties Tab
	Source Control Tab
	Editing Tab
	Indentation Tab
	Preview Tab

	Printing Files
	Page Setup
	Print to HTML File

	Saving Files
	Saving Files Remotely
	Show Unsaved Changes

	Reverting Files
	Closing Files

	Searching
	Searching for Strings
	Searching Within Open Files: Find Dialog
	Replacing Within Open Files: Replace Dialog
	Searching for the Word Under the Cursor
	Incremental Search
	Searching All Files: Find in Files Dialog
	Fast Search: Open/Find Toolbar
	Find Results Tabs

	Finding Functions: Function Search
	Moving Between Functions
	Displaying a List of Functions


	Editing
	Language Support
	Syntax Coloring and Indentation
	Background Syntax Checking
	AutoComplete
	PHP AutoComplete
	Python AutoComplete
	Perl AutoComplete
	Tcl AutoComplete
	XML AutoComplete
	XSLT AutoComplete

	CallTips
	Viewing the Current File as Another Language
	Commenting Blocks of Code

	Manipulating Code
	Automatically Repeating Keystrokes
	Indenting and Un-indenting Lines of Code
	Reflowing Paragraphs
	Joining Lines
	Converting between Uppercase and Lowercase
	Transposing Characters
	Literal Characters
	Commenting and Un-commenting Lines or Blocks of Code
	Cleaning Line Endings
	Tabifying and Untabifying Regions
	Selecting Columns
	Completing Words
	Selecting Blocks of Code

	Editor Display Characteristics
	Toggling Whitespace On and Off
	Toggling Indentation Guides On and Off
	Toggling Line Numbers On and Off
	Toggling EOL (end of line) Markers On and Off
	Increasing and Decreasing the Code Font Size
	Toggling Fixed and Non-Fixed Width Fonts
	Folding and Unfolding Code

	Navigating Within Files
	Moving to a Specific Line
	Setting and Moving to Bookmarks and Marks
	Matching Braces
	Detecting Changed Files

	Preview in Browser
	Editor Tab Display

	Working with Folders
	Folder Options
	Import from File System
	Export Contents to Package
	Import Contents from Package
	Refresh Folder Contents Status
	Adding Components to Folders
	Exporting Contents as Project File
	Renaming Folders
	Source Control on Folder Contents
	Deleting Folders


	Snippets
	Creating Snippets
	Configuring Snippets
	Using Snippets
	Snippet Options
	Snippet Properties
	Assigning Custom Icons to Snippets
	Snippet Key Bindings



	Macros
	Creating Macros
	Recording Macros
	Saving Recorded Macros
	Programming Macros

	Running Macros
	Specifying Macro Triggers
	Running Macros in the Background

	Storing Macros in Projects or the Toolbox
	Macro Options
	Assigning Custom Icons to Macros
	Assigning Key Bindings to Macros


	Macro API
	Introduction to the Komodo Macro API
	Warning
	Feedback

	The editor Object
	editor Attributes
	komodo.editor Methods
	editor Object Notes

	The document Object
	document Attributes

	The file Object
	file attributes

	The komodo.doCommand Function
	The komodo.findPart Function
	The komodo.interpolate Function
	The komodo.getWordUnderCursor Function

	Komodo Command Id List
	Breakpoint Manager
	Code Browser
	Code Intelligence
	Debugger
	Editor
	Find
	General
	Help
	Macro
	Projects/Toolbox
	Source Code
	Source Control
	Toolbox
	Tools
	User Interface

	Templates
	Creating New Files from Templates
	Creating Custom Templates
	Using Interpolation Shortcuts in Custom Templates

	Storing Templates in a Project or the Toolbox
	Template Options
	Assigning Custom Icons to Templates
	Template Key Bindings


	Open Shortcuts
	Open Shortcut Options
	Open Shortcut Properties
	Assigning Custom Icons to Open Shortcuts
	Open Shortcut Key Bindings



	URL Shortcuts
	URL Shortcut Options
	URL Shortcut Properties
	Assigning Custom Icons to URL Shortcuts
	URL Shortcut Key Bindings



	Run Commands
	Creating Run Commands
	Simple Run Commands
	Advanced Run Commands
	Command Output Tab

	Storing Run Commands in a Project or the Toolbox
	Run Command Properties
	Assigning Custom Icons to Run Commands
	Run Command Key Bindings



	Custom Toolbars and Menus
	Creating Custom Toolbars and Menus
	Custom Menu and Toolbar Options
	Custom Menu and Toolbar Properties


	Debugging
	Debugging Programs
	Starting the Debugger
	Multi-Session Debugging

	Debugging Options
	Global Options
	General Tab
	Environment Tab
	CGI Environment Tab
	CGI Input Tab
	Storing Debug Configurations

	Breakpoints and Tcl Spawnpoints
	Breakpoint and Spawnpoint Management
	Toggling Breakpoints
	Toggling Spawnpoints
	Go to the Source Code
	Breakpoint Properties
	Forcing a Break


	Remote Debugging
	Listen for Remote Debugger
	Check Listener Status
	Multi-User Debugging
	Debugger Proxy

	Sending Input to the Program
	Using Debugger Commands
	Debugger Command Description
	Debugger Stepping Behavior

	Viewing the Debugging Session
	Viewing Variables
	Python Variables and Objects
	PHP and Tcl Variables
	Perl Variables
	XSLT Variables

	Setting Watched Variables
	Output Tab
	HTML Preview Tab
	Viewing the Call Stack

	Watching Files
	Detaching the Debugger
	Stopping the Debugger

	Debugging Perl
	Configuring the Perl Debugger
	Debugging Perl Remotely
	Disabling and Enabling the Perl Dev Kit (PDK) Debugger
	Disabling the PDK Debugger on the Remote Machine

	Configuring Perl for CGI Debugging
	Configuring a Microsoft IIS Web Server
	Configuring an Apache Web Server
	Starting a CGI Debugging Session


	Debugging Python
	Configuring the Python Debugger
	Using the Python Remote Debugger
	Installing the Python Remote Debugger on the Remote Machine
	Invoking the Python Remote Debugger
	Running dbgpClient.py from the Command Line
	Using dbgpClient Functions in Python Programs
	Just-in-Time Debugging

	CGI Debugging


	Debugging PHP
	Installing PHP
	Windows
	Linux

	Local PHP Debugging
	Configuring Local PHP Debugging
	Starting and Stopping a PHP Local Debugging Session

	Remote PHP Debugging
	Configuring Remote PHP Debugging
	Step 1 - Copy the Debugging Extension to the Web Server
	Step 2 - Edit the Web Server's PHP Configuration

	Starting and Stopping a PHP Remote Debugging Session
	Using xdebug_break()


	Debugging Tcl
	Configuring Local Tcl Debugging
	Remote Tcl Debugging
	Installing the Tcl Debugger Application on a Remote Machine
	Invoking the Tcl Debugger Application


	Debugging XSLT
	Using the XSLT Debugger
	Using a Remote XML Input File
	XSLT Stepping Behavior



	Interactive Shell
	Stand-Alone Interactive Shell
	Debugging with an Interactive Shell
	Using the Interactive Shell
	Setting Shell Preferences
	Starting the Interactive Shell
	Using Multiple Shells
	Using AutoComplete and CallTips
	Customizing Colors and Fonts
	Viewing Shell History
	Stopping a Shell Session
	Clearing the Shell Buffer

	Using the Python Interactive Shell
	Debugging with the Python Shell

	Using the Tcl Interactive Shell
	Debugging with the Tcl Shell

	Using the Perl Interactive Shell
	Debugging with the Perl Shell


	Code Intelligence
	Building the Code Intelligence Database
	Code Browser
	Context Menu
	Sorting
	Locating Current Scope
	Using the Scope Indicator
	Filtering Symbols
	Viewing Code Descriptions

	Object Browser
	Searching


	Source Code Control (Komodo Pro)
	Configuring Source Code Control Integration
	Configuring CVS
	Installing the CVS Executable

	CVS Over SSH
	Installing and Configuring Putty on Windows
	Configuring Windows/Cygwin-SSH or Linux/SSH

	Configuring Perforce
	Configuring Preferences

	Using Source Code Control
	SCC Toolbar, Menus and Output Tab
	Source Code Control Toolbar
	Source Code Control Menus
	Source Code Control Output Tab and Status Messages

	Source Code Control Commands
	File Status Icons


	GUI Builder (Komodo Pro)
	Creating Dialog Projects
	Modifying an Existing Dialog
	Adding Code to a Dialog
	Testing the GUI
	Viewing Code in the Komodo Editor
	Dialog Project Options

	GUI Builder Overview
	Workspace
	Toolbar
	Widget Palette Tab
	Widget Properties

	Dialog Tab
	Menu Tab
	Status Bar

	Building GUI Applications
	Adding and Resizing Rows and Columns
	Adding Widgets
	Deleting Widgets
	Configuring Widget Properties
	Basic Widget Properties
	Advanced Widget Properties

	Resizing a Widget
	Attaching Scrollbars to a Widget
	Loading a GUI Builder Project into a Frame Widget

	GUI Builder Preferences
	General Preferences
	Appearance Preferences

	Tk and Widget Reference

	Using the Rx Toolkit
	Creating Regular Expressions
	Adding Metacharacters to a Regular Expression
	Setting the Match Type
	Adding Modifiers to a Regular Expression

	Evaluating Regular Expressions
	Match Results

	Modifier Examples
	Using Ignore Case
	Using Multi-Line Mode
	Using Single-Line Mode
	Using Multi-line Mode and Single-line Mode
	Using Verbose

	Using Regular Expressions
	Perl
	Python
	Tcl
	PHP


	Regular Expressions Primer
	About Regular Expressions
	About Regex Syntax
	Building Simple Patterns
	Matching Simple Strings
	Searching with Wildcards
	Searching for Special Characters
	Ranges and Repetition
	Ranges, {min, max}
	Repetition, ?*+
	Quantifier Summary

	Using Conditional Expressions
	Grouping Similar Items in Parentheses
	Matching Sequences
	Building Simple Character Classes
	Preventing Matches with Character Classes
	Compound Character Classes
	Character Class Summary

	Matching Locations within a String

	Searching and Replacing
	Building Simple Substitution Searches
	Modifying Substitution Searches
	Substitution Modifier Summary


	More Regex Resources
	Internet Web Sites:


	Komodo and the Perl Dev Kit
	Configuring the General Tab
	Configuring the Modules Tab
	Specifying Extra Modules For Your Script
	Specifying Modules to Trim from the Package

	Configuring the Files Tab
	Adding Files
	Editing Files
	Deleting Files

	Configuring the Version Tab
	Configuring the Library Paths Tab
	Specifying "lib" and "blib" Directories to Include

	Configuring the Extra Tab
	Specifying Icon files
	Specifying Additional Command Line Parameters


	Visual Package Manager (Komodo Pro)
	Installing New Modules
	Searching for Modules
	Upgrading Existing Modules

	Removing Installed Modules
	Configuring the VPM
	Adding a Repository


	Interpolation Shortcuts
	Interpolation Code List
	Basic Interpolation Code Syntax
	Non-Bracketed Syntax
	Bracketed Syntax

	Basic Interpolation Options
	Date Code
	Date Code Syntax
	Date Code Format Option

	Ask Code
	Ask Code Syntax
	Ask Code Options
	The Query Dialog for "ask"-modified and "orask"-modified Codes

	Path Code
	Path Code Syntax
	Path Code Options

	Debugger Code
	Debugger Code Syntax
	Debugger Code Options

	Pref Code
	Pref Code Syntax

	Back-References
	Back-Reference Syntax


	Customizing Komodo
	Appearance Preferences
	Code Intelligence Preferences
	Debugger Preferences
	Editor Preferences
	Configuring Key Bindings
	Configuring Indentation
	Smart Editing
	Background Syntax Checking
	Configuring Word Completion
	Configuring Word Wrap
	Configuring Edge Lines

	Save Options

	File Associations
	Fonts and Colors Preferences
	Fonts
	Colors
	Common Syntax Coloring
	Language-Specific Coloring

	GUI Builder Preferences
	Interactive Shell Preferences
	Internationalization Preferences
	Language Help Settings
	Configuring Reference Locations
	Using Language Help

	Language Configuration
	Configuring Perl
	Configuring PHP
	Configuring Python
	Configuring Tcl
	Tcl Syntax Checking

	Configuring HTML

	New Files Preferences
	Printing Preferences
	Projects and Workspace Preferences
	Configuring Proxies
	Servers Preferences
	Shared Support Preferences
	Sharing .tip, .pcx and .pdx Files
	Sharing Preferences

	Source Code Control Preferences
	CVS Integration
	Perforce Integration

	Web and Browser Preferences
	Windows Integration Preferences

	Showcase and Tutorials
	Feature Showcase Overview
	Editing
	Code Analysis
	Debugging
	Search
	Tools
	Project and Workspace

	Feature Showcase: Fast String Finder
	Feature Showcase: Custom Toolbar
	Feature Showcase: Incremental Search
	Feature Showcase: Find and Open Files with the Open/Find Toolbar
	Feature Showcase: Code Completion Snippet
	Feature Showcase: Preview Cascading Style Sheets
	Feature Showcase: Snippet that Prompts for Input
	Feature Showcase: Google Run Command
	Feature Showcase: Using the Interactive Shell
	Feature Showcase: Store a Filesystem Layout in a Project
	Feature Showcase: Using Conditional Breakpoints
	Feature Showcase: Store a Custom Template in a Project
	Feature Showcase: Build a Perl Executable
	Feature Showcase: Shortcut to Commonly Used Directory
	Feature Showcase: Reuse Code Fragments
	Feature Showcase: View Code Descriptions in the Code Browser
	Feature Showcase: View the Scope of a Code Construct
	Feature Showcase: Find Code Constructs
	Feature Showcase: Test a Regular Expression with the Rx Toolkit
	Feature Showcase: Assign a Key Binding to a Toolbox Item
	Feature Showcase: Distributing a Project in a Package
	Feature Showcase: Debug an XSLT Program
	Perl Tutorial
	Perl Tutorial Overview
	Before You Start
	Perl Tutorial Scenario

	Installing Perl Modules Using VPM or PPM
	Running the Visual Package Manager (Komodo Pro only)
	Running the Perl Package Manager (Komodo Personal)
	About PPM and VPM

	Opening Files
	Open the Perl Tutorial Project
	Open the Perl Tutorial Files
	Overview of the Tutorial Files

	Analyzing the Program
	Introduction
	Setting Up the Program
	Line 1 - Shebang Line
	Lines 2 to 4 - External Modules

	Writing the Output Header
	Lines 6 to 7 - Open Files
	Lines 9 to 13 - Print the Header to the Output File

	Setting Up Input Variables
	Lines 15 to 16 - Assign Method Call to Scalar Variable
	Lines 18 to 19 - Method "getline"

	Starting the Processing Loop
	Line 21 - "while" Loop
	Lines 22 to 25 - Extracting a Line of Input Data

	Converting Characters with a Regular Expression
	Lines 27 to 31 - "foreach"

	Combining Field Reference and Field Data
	Lines 33 to 35 - hash slice

	Writing Data to the Output File
	Lines 37 to 50 - Writing Data to the Output File

	Closing the Program
	Line 51 - Closing the Processing Loop
	Lines 52 to 54 - Ending the Program


	Run the Program to Generate Output
	Debugging the Program
	More Perl Resources
	ASPN, the ActiveState Programmer Network
	Documentation
	Tutorials and Reference Sites


	PHP Tutorial
	Overview
	Before You Start
	PHP Tutorial Scenario

	Opening the Tutorial Project
	Overview of the Tutorial Files
	Open the PHP Tutorial File

	Analyzing the PHP Tutorial File
	Analyzing guestbook.php
	Introduction
	HTML Header
	Lines 1 to 8 - HTML Header

	PHP Declaration and Datafile
	Line 9 - PHP Declaration
	Lines 10 to 18 - Comments
	Line 22 - Datafile

	GuestBook Class
	Lines 25 to 28 - Class Declaration

	GuestBook Function
	Lines 34 to 37 - GuestBook Function
	Lines 40 to 44 - Check for Valid Form Entry
	Lines 45 to 46 - Check for Variable Value

	_getData Function
	Lines 53 to 58 - _getData Function

	outputData Function
	Lines 64 to 66 - outputData Function

	_createEntryHTML Function
	Lines 72 to 77 - Retrieve Form Data
	Lines 80 to 83 - Validate Form Data
	Line 86 - Current Date and Time
	Lines 89 to 94 - Interpolate Form Data with HTML

	_writeDataFile Function
	Lines 100 to 106 - Open the Data File
	Lines 108 to 110 - Write to the Data Files
	Lines 111 to 113 - Close the Data File

	addGuestBookEntry Function
	Lines 120 to 125 - Call Functions for Writing Data

	outputForm Function
	Lines 127 to 142 - The Function for HTML Form

	Closing Tags
	Lines 148 to 151 - Closing Tags


	Running the Program
	Debugging the Program
	More PHP Resources
	ASPN, the ActiveState Programmer Network
	Tutorials and Reference Sites


	Python Tutorial
	Overview
	Before You Start
	Python Tutorial Scenario

	Opening the Tutorial Project
	Overview of the Tutorial Files
	Open the Python Tutorial File

	Analyzing the Python Files
	Analyzing preprocess.py
	Setting Up the preprocess.py Program
	Lines 3 to 57 - Defining a Module Docstring
	Lines 59 to 65 - Importing Standard Python Modules
	Line 67 - Importing the contenttype Module

	Defining an Exception Class
	Lines 72 to 88 - Declaring an Exception

	Initializing Global Objects
	Line 93 - Initializing log
	Lines 98 to 111 - Mapping Language Comments

	Defining a Private Method
	Lines 116 to 123 - Expression Evaluation

	Preprocessing a File
	Lines 129 to 140 - The preprocess Method Interface
	Lines 145 to 156 - Identifying the File Type
	Lines 159 to 166 - Defining Patterns for Recognized Directives
	Lines 178 to 303 - Scanning the File to Generate Output
	Lines 311 to 349 - Interpreting Command Line Arguments
	Lines 351 to 352 - Running the Main Method

	Analyzing contenttype.py
	Open contenttype.py
	Setting Up the contenttype.py Module
	Lines 16 to 19 - Importing External Modules

	Getting Data from content.types
	Lines 29 to 31 - Finding the Helper File (content.types)
	Lines 33 to 80 - Loading the Content Types from content.types
	Lines 85 to 118 - Determining a File's Content Type


	Running the Program
	Using a Run Command
	Using the Debugger

	Debugging the Program
	Explore Python with the Interactive Shell
	More Python Resources
	ASPN, the ActiveState Programmer Network
	Tutorials and Reference Sites
	Preprocessor Reference


	Tcl Tutorial
	Tcl Tutorial Overview
	Before You Start
	Tcl Tutorial Scenario

	Opening the Tcl Tutorial Project
	Overview of the Tutorial Files
	Opening the Tcl Project File

	Using Tcl Editing Features
	Syntax Coloring
	AutoComplete and CallTips
	Background Syntax Checking
	Code Folding

	Editing the GUI
	Opening a GUI Builder Project
	Viewing Project Properties
	Adding Widgets to a Dialog
	Resizing Widgets
	Editing Widget Properties
	Build the GUI

	Adding Callback Code
	Open the Program File
	Adding Code to the Radio Buttons

	Debugging the Program
	More Tcl Resources
	ASPN, the ActiveState Programmer Network
	Documentation
	Tutorials and Reference Sites


	XSLT Tutorial
	XSLT Tutorial Overview
	Before You Start
	XSLT Tutorial Scenario

	Opening the Tutorial Project
	Opening the XSLT Tutorial Files
	Overview of the Tutorial Files

	Analyzing the Program
	XSLT Header
	Lines 1 to 3 - XML and XSLT Declarations

	HTML Header
	Line 6 - XSLT "template"
	Lines 7 to 11 - HTML Tags
	Line 12 - XSLT apply-templates
	Lines 13 to 15 - HTML Tags

	Format Email Header
	Lines 18 to 21 - Select HEADER content
	Lines 22 to 29 - call-template

	Process Email
	Lines 33 to 34 - Process First Message
	Lines 36 to 39 - Process Email Body

	Format Email Addresses
	Lines 45 to 52 - Format Email Addresses


	Running the Program
	Debugging the Program
	More XSLT Resources
	ASPN, the ActiveState Programmer Network
	Documentation

	Tutorials and Reference Sites

	Run Command Tutorial
	Run Command Tutorial Overview
	Before You Start
	Run Command Tutorial Scenario
	Opening the Tutorial Project

	Running Simple Commands
	Hello, World!
	Command Output Tab
	Inserting Command Output
	Filtering Parts of a Document

	Using Advanced Options
	Specifying a Command's Working Directory
	Specifying Environment Variables
	Running GUI Apps or Running Commands in a Console

	Saving and Rerunning Commands
	Rerunning Recent Commands
	Saving Commands in the Toolbox
	Saving Commands in a Project
	Editing Saved Command Properties

	Using Command Shortcuts
	Shortcuts for the Current File
	Shortcuts for the Current Selection
	Using Shortcuts for a Command's Directory

	Using Command Query Shortcuts
	Introduction
	Always Prompting with %(ask)
	Prompting When Necessary with %(...:orask)

	Parsing Command Output
	Introduction
	Parsing with a Regular Expression
	Using "Find in Files"



	Komodo Reference
	Installing Komodo 3.0
	Windows
	Prerequisites
	Hardware Requirements
	Operating System Requirements
	Software Prerequisites on Windows

	Upgrading from Previous Komodo Versions
	Uninstalling
	Remote Debugging

	Installing Komodo on Windows
	Starting Komodo on Windows
	Uninstalling Komodo on Windows

	Linux
	Prerequisites
	Hardware Requirements
	Operating System Requirements
	Software Prerequisites on Linux
	Adding Perl or Python to the PATH Environment Variable

	Upgrading from Previous Komodo Versions
	Uninstalling
	Remote Debugging

	Installing Komodo on Linux
	Starting Komodo on Linux
	Uninstalling Komodo on Linux

	Solaris
	Prerequisites
	Hardware Prerequisites
	Operating System Requirements
	Software Prerequisites

	Installing Komodo on Solaris
	Starting Komodo on Solaris
	Uninstalling Komodo on Solaris


	Release Notes
	Komodo 3.0: July 2004
	Code Intelligence
	Interactive Shell
	Debugging
	Rx Toolkit
	Multi-User Features
	Enhanced Search Functionality
	Macro Enhancements
	Custom Toolbars, Menus and Icons
	Editing Enhancements
	Miscellaneous
	Documentation

	Release History
	Komodo 3.0 Beta 4: June 2004
	Komodo 3.0 Beta 3: May 2004
	Komodo 3.0 Beta 2: May 2004
	Komodo 3.0 Beta 1: May 2004
	Komodo 2.5.2: January 2004
	Komodo 2.5.1: October 2003
	Komodo 2.5 for Windows, Linux: September 2003
	Komodo 2.5 Technology Preview 1 for Solaris: August 2003
	Komodo 2.5 Beta 1 for Windows, Linux: August 2003
	Komodo 2.5 Alpha 2: July, 2003
	Komodo 2.3: February, 2003
	Komodo 2.3 beta 2: February, 2003
	Komodo 2.3 beta 1: January, 2003
	Komodo 2.0.1 for Linux: November, 2002
	Komodo 2.0.1 for Windows: October, 2002
	Komodo 2.0 beta 3 for Linux: October, 2002
	Komodo 2.0 beta 2 for Linux: September, 2002
	Komodo 2.0 for Windows: September, 2002
	Komodo 2.0 beta 2 for Windows: September, 2002
	Komodo 2.0 beta 1 for Linux: September, 2002
	Komodo 2.0 beta 1 for Windows: August, 2002
	Komodo 1.2.9: July, 2002
	Komodo 1.2.7 RC1 for Windows and Linux: March, 2002
	Komodo 1.2 for Windows and Linux: December, 2001
	Komodo 1.2 beta 1 for Linux: November 2001
	Komodo 1.2 beta 2 for Windows: November, 2001
	Komodo 1.2 beta 1 for Windows: October, 2001
	Komodo 1.1: June, 2001
	Komodo 1.0: April, 2001
	Komodo .1: November, 2000

	Known Issues
	Installation Issues
	Startup Issues
	Editing Issues
	Debugging Issues
	Other Issues
	Linux / Solaris Issues


	Komodo FAQ
	Komodo doesn't start
	I can't see my Left or Right Pane
	I can't see my Bottom Pane
	I want to maximize the Editor Pane
	How do I know if I'm debugging?
	How do I know if I'm editing?
	How can I add command-line arguments to my program for debugging?
	Komodo crashes. What can I do?
	Step 1: Creating the error log files
	Step 2: Locating the error log files
	Step 3: Verifying and sending the files to ActiveState

	Why is Komodo so big?
	I already have Mozilla. Why do I need to have two versions?
	I'm having trouble debugging PHP. What do I do?
	Confirm PHP Configuration
	Common PHP Configuration Problems
	Windows-Specific Configuration Issues
	Version Error Messages

	How do I emulate sessions in PHP debugging?
	How do I configure Virtual Hosting on an Apache Web server?
	I moved my Komodo installation on Linux, and am now getting Perl debugging errors.
	How do I prevent the dialog from displaying every time I start the debugger?
	Why do I get a CGI security alert when debugging PHP?
	I'm using Windows 98. When I start Komodo, I get the error "Page fault in MSVCRT.DLL".
	When I click Check Configuration on the Start Page, Komodo reports that a language that is installed on my system is not available. Why?
	My screen goes black for a second or two whenever I open files for which Komodo performs background syntax checking. Why?
	Why does VPM display a "Failure to Connect To Web Server" message?
	Why can't I find the module that I want using the Visual Package Manager (VPM)?
	How can I run additonal CVS commands from within Komodo?

	License and Copyrights
	Komodo License

	Sending Feedback
	Comments and Feature Requests
	Reporting Bugs



